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1. Introduction

• Kaup-Kupershmidt equation (KKE)

∂tf = ∂5
x5f + 10f∂3

x3f + 25∂xf∂
2
x2f + 20f2∂xf.

• S-integrability of KKE (existence of a Lax representation)

∂tL = [L,A],

L = ∂3
x3 + 2f∂x + ∂xf,

A = 9∂5
x5 + 30f∂3

x3 + 45∂xf∂
2
x2

+ (20f2 + 35∂2
x2f)∂x + 10∂3

x3f + 20f∂xf.
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• Factorization of L operator.

Scalar third order differental operator ⇒ matrix first order differ-
ential operator

L → L = i∂x +Q− λJ,

where

Q =





Q̃ 0 0
0 0 0

0 0 −Q̃



 , J =





0 1 0
0 0 1
1 0 0



 .

Lax operator assoc. with sl(3,C) with a Z3 reduction.

2. Some necessary facts about Lie algebras and the Inverse

scattering method

2.1. The sl(r + 1,C) algebra

• Definition of sl(r + 1,C)

A ∈ sl(r + 1,C) ⇔ trA = 0.
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• Cartan subalgebra h ⊂ g — maximal commutative subalgebra. For
sl(r + 1,C) the Cartan basis of h reads

Hk = Ekk −
1

r + 1

r+1
∑

j

Ejj , k = 1, . . . , r.

• Root system ∆ of g contains all covectors α that

[Hk, Eα] = α(Hk)Eα,

where α ∈ h∗ is a root and Eα ∈ g is the corresponding root vector.
For sl(r + 1) the roots can be presented by

ei − ej , i 6= j, i, j = 1, . . . , r + 1,

where {ek}
r
k=1 is an orthonormal basis in the Euclidean space E

r.
The set of all simple roots is formed by

αj = ej − ej+1,

0-3



while the maximal root is

αmax = e1 − er+1.

• The Weyl basis of sl(r + 1) reads

Eej−ej
= Eij , (Eij)mn = δimδjn.

We require that Hj and Eα are normalized with respect to Killing
form, i.e.

〈Hj , Hk〉 ≡
1

2
tr (HjHk) = δjk,

〈Eα, Eβ〉 = δα,−β .

• The second Casimir operator P which has the important property

P (A⊗B) = (B ⊗A)P, ∀A,B ∈ SL(r + 1)

looks as follows

P =

r
∑

j=1

Hj ⊗Hj +
∑

α∈∆

Eα ⊗ E−α.
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2.2. Spectral problem for L operator

• Generalized Zakharov-Shabat system

Lψ = (i∂x +Q− λJ)ψ = 0,

where Q(x), J ∈ g (without loss of generality J can be chosen as
a Cartan element while Q(x) is a linear combinations the Weyl
generators of g) and ψ(x, λ) ∈ G. In the simplest case of zero
boundary conditions, i.e. limx→±∞Q(x) = 0 the continuous part
of the spectrum of L fills up the R-axis of the complex λ-plane.

• The scattering (data) matrix

T (λ) = ψ̂+(x, λ)ψ−(x, λ), λ ∈ R,

where ψ±(x, λ) are Jost solutions to fulfill

lim
x→±∞

ψ±(x, λ)eiλJx = 11.

There exist fundamental solutions χ+(x, λ) and χ−(x, λ) which
possess analitical properties in C+ and C−. χ+(x, λ) and χ−(x, λ)
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are interrelated via

χ+(x, λ) = χ−(x, λ)G(λ), λ ∈ R,

G(λ) =

{

Ŝ−(λ)S+(λ),

D̂−(λ)T̂+(λ)T−(λ)D(λ).

S±(λ), T±(λ) and D±(λ) are factors in the Gauss decomposition
of T (λ)

T (λ) =

{

T−(λ)D+(λ)Ŝ+(λ),

T+(λ)D−(λ)Ŝ−(λ).

2.3. Algebraic reductions

• Reduction group

Let GR be a discrete group acting on the set fundamental solutions
{ψ(x, λ)} as follows

Cψ(x, κ(λ))C−1 = ψ̃(x, λ).
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The requirement of GR-invariance of the lin. problem yields to the
following conditions

CQ(x)C−1 = Q(x), κ(λ)CJC−1 = λJ.

• Coxeter type reduction

κ : λ→ ωλ, ω = e2iπ/h,

C = exp(
∑

k

ωkHk).

Consequently Q(x) and J have the form

Q =

r
∑

k=1

QkHk, J =
∑

α∈A

Eα,

where A stands for the set of all admissible roots (simple + minimal
roots) of g. Thus KKE can be related to a Z3-reduced L operator
assoc. with the sl(3) algebra.
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2.4. Spectral problem for L and Coxeter type reductions

The presence of a Coxeter reduction affects the spectral properties of
L — its continuous spectrum consists of a bunch of 2h rays lν closing
equal angles π/h. From now on we shall consider L operator assoc. with
the sl(3) algebra with a Z3 reduction. Each ray lν is connected with a
sl(2) subalgebra— the algebra {Eα, E−α, Hα} generated by the root α
to fulfill the condition

δν ≡ {α ∈ ∆| imλα(J) = 0, ∀λ ∈ lν}, ν = 1, . . . , 6.

The following relations between these root subsystems hold true

δν = δν+3, ∆ =

3
⋃

ν=1

δν .

The λ-plane splits into 6 domains Ων separ. by lν . One can introduce
ordering in Ων

∆+
ν ≡ {α ∈ ∆| Imλα(J) > 0, ∀λ ∈ Ων},

∆−
ν ≡ {α ∈ ∆| Imλα(J) < 0, ∀λ ∈ Ων}
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We shall use the notation δ±ν = ∆±
ν ∩ δν as well. One can easily see that

the following symmetries hold

∆±
ν+3 = ∆∓

ν , δ±ν+3 = δ∓ν .

In each Ων exists a FAS χν(x, λ) in such a way that

χν(x, λ) = χν−1(x, λ)Gν(λ), λ ∈ lν ,

Gν(λ) =

{

Ŝ−
ν (λ)S+

ν (λ)

D̂−
ν (λ)T̂+

ν (λ)T−
ν (λ)D+

ν (λ).
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Figure 1: The contours of integration γν = lν−1 ∪ Cν−1 ∪ lν .
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3. Completeness relations for squared solutions of a Z3

reduced scattering problem related to the algebra sl(3,C)

• Squared solutions (eigenfunctions) are introduced by

e(ν)
α (x, λ) = PJ(χνEαχ̂

ν(x, λ)),

h
(ν)
j (x, λ) = PJ(χνHjχ̂

ν(x, λ)),

where PJ stands for the projection which maps onto sl(3)/h. They
originate from the Wronskian relations, for example

(χ̂νJχν(x, λ) − J)|∞−∞ =

∫ ∞

−∞

dxχ̂ν [J,Q(x)]χν(x, λ)

The next theorem represents our main result:
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Theorem 1 The squared solutions form a complete set with the

following completeness relations

δ(x− y)Π =
1

2π

6
∑

ν=1

(−1)ν+1

∫

lν

dλ
(

G
(ν)
βν

(x, y, λ)

−G
(ν−1)
−βν

(x, y, λ)
)

− i

6
∑

ν=1

∑

nν

Res
λ=λnν

G(ν)(x, y, λ).

where

G
(ν)
βν

(x, y, λ) = e
(ν)
βν

(x, λ) ⊗ e
(ν)
−βν

(y, λ),

Π =
∑

α∈∆+

Eα ∧ E−α

α(J)
.

Proof: The completeness relations can be derived starting from
the expression

J (x, y) =

6
∑

ν=1

(−1)ν+1

∮

γν

G(ν)(x, y, λ)dλ.
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The Green functions G(ν)(x, y, λ) have the form

G(ν)(x, y, λ) = θ(y − x)
∑

α∈∆+
ν

e(ν)
α (x, λ) ⊗ e

(ν)
−α(y, λ)

−θ(x− y)





∑

α∈∆−

ν

e(ν)
α (x, λ) ⊗ e

(ν)
−α(y, λ) +

2
∑

j=1

h
(ν)
j (x, λ) ⊗ h

(ν)
j (y, λ)





The proof can be done in three steps

1. Lemma 1 The following equality holds for λ ∈ lν
∑

α∈∆

e(ν−1)
α (x, λ) ⊗ e

(ν−1)
−α (y, λ) +

∑

j=1,2

h
(ν−1)
j (x, λ) ⊗ h

(ν−1)
j (y, λ)

=
∑

α∈∆

e(ν)
α (x, λ) ⊗ e

(ν)
−α(y, λ) +

∑

j=1,2

h
(ν)
j (x, λ) ⊗ h

(ν)
j (y, λ).

According to Cauchy’s residue theorem we have

J (x, y) = 2πi

6
∑

ν=1

∑

nν

Resλ=λnν
G(ν)(x, y, λ).
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In the simplest case when e
(ν)
α (x, λ) and h

(ν)
j (x, λ) possess only

a single simple pole λν ∈ Ων , i.e.

e(ν)
α (x, λ) ≈

e
(ν)
α,nν (x)

λ− λnν

+ ė(ν)
α (x) +O(λ− λnν)

h
(ν)
j (x, λ) ≈

h
(ν)
j (x)

λ− λnν

+ ḣ
(ν)
j (x) +O(λ− λnν

).

2. Lemma 2 Residues of G(ν)(x, y, λ) are given by

Resλ=λnν
G(ν)(x, y, λ) = ė

(ν)
βν ,n(x)⊗e

(ν)
−βν ,n(y)+e

(ν)
βν ,n(x)⊗ė

(ν)
−βν ,n(y).

Taking into account the orientation of the contours γν we have

J (x, y) =

6
∑

ν=1

(−1)ν+1

∫

lν

(G(ν)(x, y, λ) −G(ν−1)(x, y, λ))dλ

+

6
∑

ν=1

(−1)ν+1

∫

Cν

G(ν)(x, y, λ)dλ.
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3. Lemma 3 In the integrals along the rays contribute only terms

related to the roots that belong to δ+
ν and δ−ν respectively, i.e.

G(ν)(x, y, λ) −G(ν−1)(x, y, λ)

= e
(ν)
βν

(x, λ) ⊗ e
(ν)
−βν

(y, λ) − e
(ν−1)
−βν

(x, λ) ⊗ e
(ν−1)
βν

(y, λ).

Asymptotically G(ν)(x, y, λ) is an entire function hence we are al-
lowed to deform the arcs Cν into lν ∪ lν+1. Thus for the integrals
along the arcs Cν one obtains

6
∑

ν=1

(−1)ν+1

∫

Cν

G(ν)(x, y, λ)dλ = 2πδ(x− y)
∑

α∈∆+

(Eα ∧ E−α)

α(J)
.
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• Importance of the completeness relations of the squared solutions.

Completeness of the squared solutions ⇔ a basis in a functional
space.

X(x) =
1

2π

6
∑

ν=1

(−1)ν+1

∫

lν

dλ
(

Xβν
e
(ν)
βν

(x, λ) −X−βν
e
(ν−1)
−βν

(x, λ)
)

−i
6

∑

ν=1

Xν .
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