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1. Introduction
e Kaup-Kupershmidt equation (KKE)

Orf = 0% f +10f02 f + 250, fO% f + 2020, f.

e S-integrability of KKE (existence of a Lax representation)

oL = [L,A]
L = 0% +2f0,+ 0.f,
A = 90°% +30f02 + 450, f0>
+ (202 4 350% )0, + 10025 f +20£0, f.
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e Factorization of £ operator.

Scalar third order differental operator = matrix first order differ-
ential operator

L—L=10,+Q — \J,

where
Q 0 0 01 0
Q=0 0o o |, J=|l0 01
0 0 —Q 1 0 0

Lax operator assoc. with s[(3,C) with a Zs reduction.

2. Some necessary facts about Lie algebras and the Inverse
scattering method

2.1. The sl(r +1,C) algebra
e Definition of sl(r + 1,C)
Aeslr+1,C) & trA=0.
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e Cartan subalgebra h C g — maximal commutative subalgebra. For
sl(r + 1,C) the Cartan basis of h reads

1 r+1
Hk:Ekk—r_l_l;Ejj, k:1,...,7“.

e Root system A of g contains all covectors « that
[Hk:7 Ea] — Oé(Hk)Ea,

where a € h* is a root and F, € g is the corresponding root vector.
For sl(r + 1) the roots can be presented by

€; — €5, Z;’é], i,j:1,...,r+1,

where {ey}7_, is an orthonormal basis in the Euclidean space E".
The set of all simple roots is formed by

Ozj — ej — 6j+1,
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while the maximal root is
amax — €1 — €r41.-
e The Weyl basis of sl(r + 1) reads
Eei—e. = Eij.  (Eij)mn = SimOin-

We require that H; and E, are normalized with respect to Killing
form, i.e.

(Hj, Hy) = %tf (HjHy) = 0k,
(Eo, Eg) = da,-8-
e The second Casimir operator P which has the important property
P(A® B)=(B® A)P, VA, Be SL(r+1)

looks as follows

P=) Hi®Hj+ ) E,®E_,.
j=1 aEA
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2.2. Spectral problem for L operator

e Generalized Zakharov-Shabat system
Ly = (i0; + Q — A\J)Y =0,

where Q(x),J € g (without loss of generality J can be chosen as
a Cartan element while Q(z) is a linear combinations the Weyl
generators of g) and ¥(x,\) € G. In the simplest case of zero
boundary conditions, i.e. lim, 1., @Q(x) = 0 the continuous part
of the spectrum of L fills up the R-axis of the complex A-plane.

e The scattering (data) matrix
T(\) = (2, No_(2,)),  AER,
where ¢4 (z, \) are Jost solutions to fulfill

lim 94 (x, N)e™* = 1.

r—+o00

There exist fundamental solutions x*(z,\) and x~ (x,\) which
possess analitical properties in C; and C_. x*(z,\) and x~ (z, \)

0-5



are interrelated via

X (2, A) = x " (2, NG\, A€ R,
_ S=(NSTM),
G = { D=(NTTNT~(\)D(N).

SE(N), TT(X) and D*()\) are factors in the Gauss decomposition
of T(\)
- +()\) 9+
oy = L T-O0DF )8
THN)D~(A)S™(N).

2.3. Algebraic reductions

e Reduction group

Let Gr be a discrete group acting on the set fundamental solutions
{y(x,\)} as follows

Cp(x, k(N)C ™ = (a, N).
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The requirement of GG g-invariance of the lin. problem yields to the
following conditions

CQ(z)C™ = Q(x), K(NCJC™! = A\J.

Coxeter type reduction

KiA— WA, w = 2 /h

C = exp(z wh Hy,).
k

Consequently Q(x) and J have the form

Q:ZQka, JZZEQ,
k=1

a€EA

where A stands for the set of all admissible roots (simple + minimal
roots) of g. Thus KKE can be related to a Zs-reduced L operator
assoc. with the s((3) algebra.
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2.4. Spectral problem for L and Coxeter type reductions

The presence of a Coxeter reduction affects the spectral properties of
L — its continuous spectrum consists of a bunch of 2h rays [, closing
equal angles 7w/h. From now on we shall consider L operator assoc. with
the sl(3) algebra with a Zs reduction. Each ray [, is connected with a
s[(2) subalgebra— the algebra {F,, E_,, H,} generated by the root «
to fulfill the condition

o, ={a e Alim\a(J)=0,Vrel,}, v=1,...,6.

The following relations between these root subsystems hold true

51/ — 51/—}—37 A = U 5u-

The A-plane splits into 6 domains €2, separ. by [,,. One can introduce
ordering in €2,

AT ={aec AlImAa(J) >0, VA€ Q,},
AT ={ace Allmia(J) <0, VA e Q,}
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We shall use the notation §& = AT N 4§, as well. One can easily see that
the following symmetries hold

+ +
Al/—|—3 — Aj:? 5V—|—3 — 53:
In each €, exists a FAS x”(z, \) in such a way that

Xl/(x,)\) _ XV_1($

=
G

AN
=

A€,
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Figure 1: The contours of integration v, =1, UC,_1 UL, .
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3. Completeness relations for squared solutions of a Z;
reduced scattering problem related to the algebra sl(3,C)

e Squared solutions (eigenfunctions) are introduced by

6(()4’/) (337 )‘) — PJ(XVEOJACV(xv )‘))7

B (2, 0) = Py (X" Hi % (2, V),

where P; stands for the projection which maps onto s[(3)/h. They
originate from the Wronskian relations, for example

(I @) = D = [ T e 1, Q) (2 )

— 00

The next theorem represents our main result:
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Theorem 1 The squared solutions form a complete set with the
following completeness relations

6

d(x —y)Il = % 2:(—1)”le / d\ (Gg/y) (z,y, \)

Ly

r=1

6
e liond )_- (v)
G—ﬁy (ZE,y, >‘) Z;;Aﬁffw G (ZIZ‘,y,)\)

where
G(V) )\ — (v) )\ (v) )\
Bu (:C7y7 ) eﬁy (CE, ) & e_ﬁy (ya )7
E,NE_,
I = .
2. ol
aEAT

Proof: The completeness relations can be derived starting from
the expression

6

T(o) = Y17 § Gy Ndr

vr=1 v
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The Green functions G*)(z,y, ) have the form

G (z,y,N) =0y —z) Y V() @ e’ (y, )

aEAT

2
Oz —y) | Y (@ N @y, A+ > hY (2,0 @Y (y,\)

e Ay J=1

The proof can be done in three steps

1. Lemma 1 The following equality holds for A € [,
v— v—1 v—1 v—1
Do V@A @ w) + Y R @A) @ (0

aEA j=1,2
S ) o)+ X N K
acA 7=1,2

According to Cauchy’s residue theorem we have
6

J(x,y) = 2mi Z Z Resy=x,, G (z,y,\).

vr=1 n,
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(v)

In the simplest case when ey’ (z, A) and hg-'/) (, \) possess only
a single simple pole A\, € Q,, i.e.

(v)
(. 3) ~ 22T o)+ O A,

()
hy” (z)
A— Ao

W (2, \) ~ + 2 (@) + 0N — An,).

. Lemma 2 Residues of G (x,y,\) are given by

Resa-x,, G¥)(x,y,0) = ¢ (@)@e] | (y)+eg) (2)@el] ().

Taking into account the orientation of the contours v, we have

6

J(z,y) = Z(—l)”“/ (G (2, y,A) = G¥ 1 (2,9, X)) dA
v=1 by
6
#3207 [ G0 g Nax
v=1 Cy
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3. Lemma 3 In the integrals along the rays contribute only terms
related to the roots that belong to 6 and 0, respectively, i.e.

G(V) (%’ Y, >‘) o G(V_l) (ZC, Y, )‘)
_6( )(x )\)@6(1/) ( )\)_ (v—1) \ (v —1) A\
By ) —0Bu Y, € — B (x )® 6 ( )

Asymptotically G*)(z,y, \) is an entire function hence we are al-
lowed to deform the arcs C,, into I, Ul,, 1. Thus for the integrals
along the arcs C, one obtains

6

> (=1t / GW (2, y, \)d\ = 216(z —y) > (Eaa/\ E_o)

v=1 Cv aEAT (J)
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e Importance of the completeness relations of the squared solutions.

Completeness of the squared solutions < a basis in a functional
space.

6 6

X(2) = = S (-1 / X (Xs,e) (e 0) — X, V(e 0)) i Y X,

Ly

r=1 r=1
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