On the Kaup-Kupershmidt equation. Completeness relations for the squared soutions

Tihomir Valchev

Institute for Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences, Sofia, Bulgaria

1. Introduction

- Kaup-Kupershmidt equation (KKE)

$$
\partial_{t} f=\partial_{x^{5}}^{5} f+10 f \partial_{x^{3}}^{3} f+25 \partial_{x} f \partial_{x^{2}}^{2} f+20 f^{2} \partial_{x} f
$$

- S-integrability of KKE (existence of a Lax representation)

$$
\begin{aligned}
\partial_{t} \mathcal{L} & =[\mathcal{L}, \mathcal{A}] \\
\mathcal{L} & =\partial_{x^{3}}^{3}+2 f \partial_{x}+\partial_{x} f \\
\mathcal{A} & =9 \partial_{x^{5}}^{5}+30 f \partial_{x^{3}}^{3}+45 \partial_{x} f \partial_{x^{2}}^{2} \\
& +\left(20 f^{2}+35 \partial_{x^{2}}^{2} f\right) \partial_{x}+10 \partial_{x^{3}}^{3} f+20 f \partial_{x} f
\end{aligned}
$$

- Factorization of \mathcal{L} operator.

Scalar third order differental operator \Rightarrow matrix first order differential operator

$$
\mathcal{L} \rightarrow L=i \partial_{x}+Q-\lambda J,
$$

where

$$
Q=\left(\begin{array}{ccc}
\tilde{Q} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -\tilde{Q}
\end{array}\right), \quad J=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Lax operator assoc. with $\mathfrak{s l}(3, \mathbb{C})$ with a \mathbb{Z}_{3} reduction.
2. Some necessary facts about Lie algebras and the Inverse scattering method
2.1. The $\mathfrak{s l}(r+1, \mathbb{C})$ algebra

- Definition of $\mathfrak{s l}(r+1, \mathbb{C})$

$$
A \in \mathfrak{s l}(r+1, \mathbb{C}) \Leftrightarrow \operatorname{tr} A=0
$$

- Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ - maximal commutative subalgebra. For $\mathfrak{s l}(r+1, \mathbb{C})$ the Cartan basis of \mathfrak{h} reads

$$
H_{k}=E_{k k}-\frac{1}{r+1} \sum_{j}^{r+1} E_{j j}, \quad k=1, \ldots, r .
$$

- Root system Δ of \mathfrak{g} contains all covectors α that

$$
\left[H_{k}, E_{\alpha}\right]=\alpha\left(H_{k}\right) E_{\alpha}
$$

where $\alpha \in \mathfrak{h}^{*}$ is a root and $E_{\alpha} \in \mathfrak{g}$ is the corresponding root vector. For $\mathfrak{s l}(r+1)$ the roots can be presented by

$$
e_{i}-e_{j}, \quad i \neq j, \quad i, j=1, \ldots, r+1,
$$

where $\left\{e_{k}\right\}_{k=1}^{r}$ is an orthonormal basis in the Euclidean space \mathbb{E}^{r}. The set of all simple roots is formed by

$$
\alpha_{j}=e_{j}-e_{j+1}
$$

while the maximal root is

$$
\alpha_{\max }=e_{1}-e_{r+1}
$$

- The Weyl basis of $\mathfrak{s l}(r+1)$ reads

$$
E_{e_{j}-e_{j}}=E_{i j}, \quad\left(E_{i j}\right)_{m n}=\delta_{i m} \delta_{j n}
$$

We require that H_{j} and E_{α} are normalized with respect to Killing form, i.e.

$$
\begin{aligned}
\left\langle H_{j}, H_{k}\right\rangle & \equiv \frac{1}{2} \operatorname{tr}\left(H_{j} H_{k}\right)=\delta_{j k} \\
\left\langle E_{\alpha}, E_{\beta}\right\rangle & =\delta_{\alpha,-\beta}
\end{aligned}
$$

- The second Casimir operator P which has the important property

$$
P(A \otimes B)=(B \otimes A) P, \quad \forall A, B \in S L(r+1)
$$

looks as follows

$$
P=\sum_{j=1}^{r} H_{j} \otimes H_{j}+\sum_{\alpha \in \Delta} E_{\alpha} \otimes E_{-\alpha}
$$

2.2. Spectral problem for L operator

- Generalized Zakharov-Shabat system

$$
L \psi=\left(i \partial_{x}+Q-\lambda J\right) \psi=0,
$$

where $Q(x), J \in \mathfrak{g}$ (without loss of generality J can be chosen as a Cartan element while $Q(x)$ is a linear combinations the Weyl generators of \mathfrak{g}) and $\psi(x, \lambda) \in G$. In the simplest case of zero boundary conditions, i.e. $\lim _{x \rightarrow \pm \infty} Q(x)=0$ the continuous part of the spectrum of L fills up the \mathbb{R}-axis of the complex λ-plane.

- The scattering (data) matrix

$$
T(\lambda)=\hat{\psi}_{+}(x, \lambda) \psi_{-}(x, \lambda), \quad \lambda \in \mathbb{R},
$$

where $\psi_{ \pm}(x, \lambda)$ are Jost solutions to fulfill

$$
\lim _{x \rightarrow \pm \infty} \psi_{ \pm}(x, \lambda) e^{i \lambda J x}=\mathbb{1}
$$

There exist fundamental solutions $\chi^{+}(x, \lambda)$ and $\chi^{-}(x, \lambda)$ which possess analitical properties in \mathbb{C}_{+}and $\mathbb{C}_{-} . \chi^{+}(x, \lambda)$ and $\chi^{-}(x, \lambda)$
are interrelated via

$$
\begin{aligned}
& \chi^{+}(x, \lambda)=\chi^{-}(x, \lambda) G(\lambda), \quad \lambda \in \mathbb{R}, \\
& G(\lambda)=\left\{\begin{array}{c}
\hat{S}^{-}(\lambda) S^{+}(\lambda), \\
\hat{D}^{-}(\lambda) \hat{T}^{+}(\lambda) T^{-}(\lambda) D(\lambda)
\end{array}\right.
\end{aligned}
$$

$S^{ \pm}(\lambda), T^{ \pm}(\lambda)$ and $D^{ \pm}(\lambda)$ are factors in the Gauss decomposition of $T(\lambda)$

$$
T(\lambda)=\left\{\begin{array}{l}
T^{-}(\lambda) D^{+}(\lambda) \hat{S}^{+}(\lambda) \\
T^{+}(\lambda) D^{-}(\lambda) \hat{S}^{-}(\lambda)
\end{array}\right.
$$

2.3. Algebraic reductions

- Reduction group

Let G_{R} be a discrete group acting on the set fundamental solutions $\{\psi(x, \lambda)\}$ as follows

$$
C \psi(x, \kappa(\lambda)) C^{-1}=\tilde{\psi}(x, \lambda)
$$

The requirement of G_{R}-invariance of the lin. problem yields to the following conditions

$$
C Q(x) C^{-1}=Q(x), \quad \kappa(\lambda) C J C^{-1}=\lambda J .
$$

- Coxeter type reduction

$$
\begin{array}{r}
\kappa: \lambda \rightarrow \omega \lambda, \quad \omega=e^{2 i \pi / h} \\
C=\exp \left(\sum_{k} \omega^{k} H_{k}\right)
\end{array}
$$

Consequently $Q(x)$ and J have the form

$$
Q=\sum_{k=1}^{r} Q_{k} H_{k}, \quad J=\sum_{\alpha \in A} E_{\alpha},
$$

where A stands for the set of all admissible roots (simple + minimal roots) of \mathfrak{g}. Thus KKE can be related to a \mathbb{Z}_{3}-reduced L operator assoc. with the $\mathfrak{s l}(3)$ algebra.

2.4. Spectral problem for L and Coxeter type reductions

The presence of a Coxeter reduction affects the spectral properties of L - its continuous spectrum consists of a bunch of $2 h$ rays l_{ν} closing equal angles π / h. From now on we shall consider L operator assoc. with the $\mathfrak{s l}(3)$ algebra with a \mathbb{Z}_{3} reduction. Each ray l_{ν} is connected with a $\mathfrak{s l}(2)$ subalgebra - the algebra $\left\{E_{\alpha}, E_{-\alpha}, H_{\alpha}\right\}$ generated by the root α to fulfill the condition

$$
\delta_{\nu} \equiv\left\{\alpha \in \Delta \mid \operatorname{im} \lambda \alpha(J)=0, \forall \lambda \in l_{\nu}\right\}, \quad \nu=1, \ldots, 6 .
$$

The following relations between these root subsystems hold true

$$
\delta_{\nu}=\delta_{\nu+3}, \quad \Delta=\bigcup_{\nu=1}^{3} \delta_{\nu} .
$$

The λ-plane splits into 6 domains Ω_{ν} separ. by l_{ν}. One can introduce ordering in Ω_{ν}

$$
\begin{array}{r}
\Delta_{\nu}^{+} \equiv\left\{\alpha \in \Delta \mid \operatorname{Im} \lambda \alpha(J)>0, \forall \lambda \in \Omega_{\nu}\right\}, \\
\Delta_{\nu}^{-} \equiv\left\{\alpha \in \Delta \mid \operatorname{Im} \lambda \alpha(J)<0, \forall \lambda \in \Omega_{\nu}\right\}
\end{array}
$$

We shall use the notation $\delta_{\nu}^{ \pm}=\Delta_{\nu}^{ \pm} \cap \delta_{\nu}$ as well. One can easily see that the following symmetries hold

$$
\Delta_{\nu+3}^{ \pm}=\Delta_{\nu}^{\mp}, \quad \delta_{\nu+3}^{ \pm}=\delta_{\nu}^{\mp} .
$$

In each Ω_{ν} exists a FAS $\chi^{\nu}(x, \lambda)$ in such a way that

$$
\begin{aligned}
& \chi^{\nu}(x, \lambda)=\chi^{\nu-1}(x, \lambda) G^{\nu}(\lambda), \quad \lambda \in l_{\nu}, \\
& G^{\nu}(\lambda)=\left\{\begin{array}{c}
\hat{S}_{\nu}^{-}(\lambda) S_{\nu}^{+}(\lambda) \\
\hat{D}_{\nu}^{-}(\lambda) \hat{T}_{\nu}^{+}(\lambda) T_{\nu}^{-}(\lambda) D_{\nu}^{+}(\lambda) .
\end{array}\right.
\end{aligned}
$$

Figure 1: The contours of integration $\gamma_{\nu}=l_{\nu-1} \cup C_{\nu-1} \cup l_{\nu}$.
3. Completeness relations for squared solutions of a \mathbb{Z}_{3} reduced scattering problem related to the algebra $\mathfrak{s l}(3, \mathbb{C})$

- Squared solutions (eigenfunctions) are introduced by

$$
\begin{aligned}
& e_{\alpha}^{(\nu)}(x, \lambda)=P_{J}\left(\chi^{\nu} E_{\alpha} \hat{\chi}^{\nu}(x, \lambda)\right) \\
& h_{j}^{(\nu)}(x, \lambda)=P_{J}\left(\chi^{\nu} H_{j} \hat{\chi}^{\nu}(x, \lambda)\right),
\end{aligned}
$$

where P_{J} stands for the projection which maps onto $\mathfrak{s l}(3) / \mathfrak{h}$. They originate from the Wronskian relations, for example

$$
\left.\left(\hat{\chi}^{\nu} J \chi^{\nu}(x, \lambda)-J\right)\right|_{-\infty} ^{\infty}=\int_{-\infty}^{\infty} d x \hat{\chi}^{\nu}[J, Q(x)] \chi^{\nu}(x, \lambda)
$$

The next theorem represents our main result:

Theorem 1 The squared solutions form a complete set with the following completeness relations

$$
\begin{aligned}
& \delta(x-y) \Pi=\frac{1}{2 \pi} \sum_{\nu=1}^{6}(-1)^{\nu+1} \int_{l_{\nu}} d \lambda\left(G_{\beta_{\nu}}^{(\nu)}(x, y, \lambda)\right. \\
& \left.-G_{-\beta_{\nu}}^{(\nu-1)}(x, y, \lambda)\right)-i \sum_{\nu=1}^{6} \sum_{n_{\nu}} \operatorname{Res}_{\lambda=\lambda_{n_{\nu}}}^{\operatorname{Res}^{2}} G^{(\nu)}(x, y, \lambda) .
\end{aligned}
$$

where

$$
\begin{aligned}
G_{\beta_{\nu}}^{(\nu)}(x, y, \lambda) & =e_{\beta_{\nu}}^{(\nu)}(x, \lambda) \otimes e_{-\beta_{\nu}}^{(\nu)}(y, \lambda) \\
\Pi & =\sum_{\alpha \in \Delta^{+}} \frac{E_{\alpha} \wedge E_{-\alpha}}{\alpha(J)}
\end{aligned}
$$

Proof: The completeness relations can be derived starting from the expression

$$
\mathcal{J}(x, y)=\sum_{\nu=1}^{6}(-1)^{\nu+1} \oint_{\gamma_{\nu}} G^{(\nu)}(x, y, \lambda) d \lambda
$$

The Green functions $G^{(\nu)}(x, y, \lambda)$ have the form

$$
\begin{aligned}
& G^{(\nu)}(x, y, \lambda)=\theta(y-x) \sum_{\alpha \in \Delta_{\nu}^{+}} e_{\alpha}^{(\nu)}(x, \lambda) \otimes e_{-\alpha}^{(\nu)}(y, \lambda) \\
&-\theta(x-y)\left[\sum_{\alpha \in \Delta_{\nu}^{-}} e_{\alpha}^{(\nu)}(x, \lambda) \otimes e_{-\alpha}^{(\nu)}(y, \lambda)+\sum_{j=1}^{2} h_{j}^{(\nu)}(x, \lambda) \otimes h_{j}^{(\nu)}(y, \lambda)\right]
\end{aligned}
$$

The proof can be done in three steps

1. Lemma 1 The following equality holds for $\lambda \in l_{\nu}$

$$
\begin{array}{r}
\sum_{\alpha \in \Delta} e_{\alpha}^{(\nu-1)}(x, \lambda) \otimes e_{-\alpha}^{(\nu-1)}(y, \lambda)+\sum_{j=1,2} h_{j}^{(\nu-1)}(x, \lambda) \otimes h_{j}^{(\nu-1)}(y, \lambda) \\
\quad=\sum_{\alpha \in \Delta} e_{\alpha}^{(\nu)}(x, \lambda) \otimes e_{-\alpha}^{(\nu)}(y, \lambda)+\sum_{j=1,2} h_{j}^{(\nu)}(x, \lambda) \otimes h_{j}^{(\nu)}(y, \lambda)
\end{array}
$$

According to Cauchy's residue theorem we have

$$
\mathcal{J}(x, y)=2 \pi i \sum_{\nu=1}^{6} \sum_{n_{\nu}} \operatorname{Res}_{\lambda=\lambda_{n_{\nu}}} G^{(\nu)}(x, y, \lambda)
$$

In the simplest case when $e_{\alpha}^{(\nu)}(x, \lambda)$ and $h_{j}^{(\nu)}(x, \lambda)$ possess only a single simple pole $\lambda_{\nu} \in \Omega_{\nu}$, i.e.

$$
\begin{aligned}
& e_{\alpha}^{(\nu)}(x, \lambda) \approx \frac{e_{\alpha, n_{\nu}}^{(\nu)}(x)}{\lambda-\lambda_{n_{\nu}}}+\dot{e}_{\alpha}^{(\nu)}(x)+O\left(\lambda-\lambda_{\left.n_{\nu}\right)}\right. \\
& h_{j}^{(\nu)}(x, \lambda) \approx \frac{h_{j}^{(\nu)}(x)}{\lambda-\lambda_{n_{\nu}}}+\dot{h}_{j}^{(\nu)}(x)+O\left(\lambda-\lambda_{n_{\nu}}\right)
\end{aligned}
$$

2. Lemma 2 Residues of $G^{(\nu)}(x, y, \lambda)$ are given by

$$
\operatorname{Res}_{\lambda=\lambda_{n_{\nu}}} G^{(\nu)}(x, y, \lambda)=\dot{e}_{\beta_{\nu}, n}^{(\nu)}(x) \otimes e_{-\beta_{\nu}, n}^{(\nu)}(y)+e_{\beta_{\nu}, n}^{(\nu)}(x) \otimes \dot{e}_{-\beta_{\nu}, n}^{(\nu)}(y)
$$

Taking into account the orientation of the contours γ_{ν} we have

$$
\begin{aligned}
\mathcal{J}(x, y)=\sum_{\nu=1}^{6}(-1)^{\nu+1} \int_{l_{\nu}} & \left(G^{(\nu)}(x, y, \lambda)-G^{(\nu-1)}(x, y, \lambda)\right) d \lambda \\
& +\sum_{\nu=1}^{6}(-1)^{\nu+1} \int_{C_{\nu}} G^{(\nu)}(x, y, \lambda) d \lambda
\end{aligned}
$$

3. Lemma 3 In the integrals along the rays contribute only terms related to the roots that belong to δ_{ν}^{+}and δ_{ν}^{-}respectively, i.e.

$$
\begin{aligned}
& G^{(\nu)}(x, y, \lambda)-G^{(\nu-1)}(x, y, \lambda) \\
& \quad=e_{\beta_{\nu}}^{(\nu)}(x, \lambda) \otimes e_{-\beta_{\nu}}^{(\nu)}(y, \lambda)-e_{-\beta_{\nu}}^{(\nu-1)}(x, \lambda) \otimes e_{\beta_{\nu}}^{(\nu-1)}(y, \lambda)
\end{aligned}
$$

Asymptotically $G^{(\nu)}(x, y, \lambda)$ is an entire function hence we are allowed to deform the arcs C_{ν} into $\bar{l}_{\nu} \cup \bar{l}_{\nu+1}$. Thus for the integrals along the arcs C_{ν} one obtains

$$
\sum_{\nu=1}^{6}(-1)^{\nu+1} \int_{C_{\nu}} G^{(\nu)}(x, y, \lambda) d \lambda=2 \pi \delta(x-y) \sum_{\alpha \in \Delta^{+}} \frac{\left(E_{\alpha} \wedge E_{-\alpha}\right)}{\alpha(J)}
$$

- Importance of the completeness relations of the squared solutions. Completeness of the squared solutions \Leftrightarrow a basis in a functional space.

$$
X(x)=\frac{1}{2 \pi} \sum_{\nu=1}^{6}(-1)^{\nu+1} \int_{l_{\nu}} \mathrm{d} \lambda\left(X_{\beta_{\nu}} e_{\beta_{\nu}}^{(\nu)}(x, \lambda)-X_{-\beta_{\nu}} e_{-\beta_{\nu}}^{(\nu-1)}(x, \lambda)\right)-i \sum_{\nu=1}^{6} X_{\nu}
$$

