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Setting

Throughout the whole presentation,

E is a fixed smooth manifold.

Field–Theoretic Setting.
E is the product M × T , where

• M is the space–time,
• and T the target space of a field theory.

In F. T. the number of independent variables can be 3 or 4,
depending on the role of time.
When n is the number of independent variable, we set
m = dimE − n.
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1–st Order Jet Spaces

PHILOSOPHICAL DEFINITION
1–st order jet space of E:

“the smallest and smoothest container”

of all 1st–order approximations of all n–dimensional submanifolds
L ⊆ E.

Symbol: J1(E,n).
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Implementations:
• “1–st order approximation” = n–dimensional linear subspace
of TE ⇒ J1(E,n) = Gr (TE, n);

• identify n–dimensional submanifolds tangent to each other ⇒
J1(E,n) = {all submanifolds of dimension n}/ ∼1;

• just add to the coordinates (x1, . . . , xn, u1, . . . , um) of E new
coordinates uji , i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

EXAMPLE: Field Theory
If xµ is a point of the space–time, and φj the values of the field,
the action of a 1–st order Lagrangian on φ is usually written as

S[φ] =
∫
M

L(xµ, φj , φj(µ)).
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Projection

Canonical projection J1(E,n)→ E can be seen as:
• the bundle projection of Gr (TE, n) over E;
• the point of tangency of two submanifolds;
• the first n+m coordinates of J1(E,n).

NOTATION

• L ∼1
y L
′ is the tangency relation;

• [L]1y the equivalence class of L;
• π1,0 is the projection.
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R–distribution

To any point

θ = [L]1y ∈ J1(E,n)

associate the linear subspace

Rθ = TyL ≤ TyE

.

DEFINITION
R is the canonical (relative to π1,0) distribution on E.
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Ray manifolds
Of particular interest (e.g., Lie–Bäcklund theorem) are the
so–called ray manifolds.

1,0

L

ray of L
θ = [L]1y

Rθ = TyL
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Jet–prolongation of submanifolds

The embedding
L ⊆ E

is canonically lifted to an embedding

j1(L) : L −→ J1(E,n),

where
j1(L)(y) def= [L]1y.

DEFINITION
j1(L) is the 1st jet–prolongation of L.
Its image is denoted by L(1).
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Differential equations

A submanifold
E ⊆ J1(E,n),

with
E : Fα = 0

is interpreted as a (system of) 1–st order nonlinear PDE(s).

DEFINITION
L is a solution of E iff

L(1) ⊆ E ,

or, equivalently, if j1(L)∗(Fα) = 0, for all α’s.
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Higher–order jets

Passing from J1(E,n) to

J1(J1(E,n), n)

means adding new coordinates (uj)i and (uji )k.

DEFINITION
In J1(J1(E,n), n) there lives the distinguished subset J2(E,n),
which may be thought of as:

• the equation (uj)i = uji , (uji )k = (ujk)i;
• the jets of olonomic submanifolds [L(1)][L]1y

of J1(E,n);

• the set of R–horizontal n–dimensional planes of J1(E,n), i.e.,
Θθ such that dπ1,0(RΘ) = Rθ,

and it is called the 2–nd order jet space, and identifies with the
quotient space of all submanifolds modulo 2nd–order tangency.
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Cartan distribution

Along the projection

π2,1 = π1,0|J2(E,n)

there is the relative distribution R.
All the R–planes passing trough θ generate the Cartan plane Cθ.
It is easy to see that

Cθ = Rθ ⊕ T (π−1
1,0(π1,0(θ))).

THEOREM
Jet–prolongations L(1) are precisely the maximal π(1,0)–horizontal
integral submanifolds of C.
Other integral submanifolds are the ray–manifolds.
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Infinite jet spaces
The limit of the tower of projections

πk,k−1 : Jk(E,n) −→ Jk−1(E,n)

gives J∞(E,n). The Cartan distribution becomes completely
integrable and n–dimensional!

THEOREM
Jet–prolongations L(∞) are precisely the maximal integral
submanifolds of C.

Coordinates.
The distribution C can be equivalently defined as

• an infinite Pfaff system ωjσ = 0 (in F.T. the ωjσ’s look like
ωjµ = dV φ

j
(µ));

• as generated by the total derivatives

Di =
∂

∂xi
+

∑
σ,j

ujσ+1i

∂

∂ujσ
1i = (0, . . . , 1, . . . , 0)

i–th place
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INFINITELY PROLONGED
EQUATIONS

A PROBLEM?
The restricted distribution C|E is not completely integrable, since,
in general, C is not tangent to E !

The biggest submanifold of E to which C is tangent is called the

infinite prolongation of E

and denoted by
E∞.

Algebraically the latter is obtained from the former by adding to
the Fα’s all their differential consequences (i.e., the total
derivatives).
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Example.
In F.T. the differential consequences of F = 0 are denoted by
∂(µ)F = 0. For example,

∂(µ)
δL

δφi
= 0

represent the infinitely prolonged Euler–Lagrange equations
associated with a Lagrangian L, i.e., the Covariant Phase Space
associated with L.
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Diffieties

A diffiety (from differential variety) is a couple (O, C) were O is
the geometrical object corresponding to a filtered smooth algebra,
and C is a finite–dimensional completely integrable distribution on
it. Leaves of C are called the secondary points of the diffiety, and
their totality can be denoted by M .

EXAMPLES

• If O is a fiber bundle, and C is the vertical distribution on it,
then M is just the base of the bundle (i.e., the manifold of all
the fibers)!

• (E∞, C|E∞) is a diffiety, and M is precisely the set of solutions
of E .

Accordingly to personal tastes, modifier secondary can be
replaced by variational or functional.
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ELEMENTS OF SECONDARY
CALCULUS

SECONDARY VECTOR FIELDS ON E∞
ARE INFINITESIMAL SYMMETRIES OF E

Vector fields “respecting” C|E∞ are contact fields

DE = {vector fields X on E∞ such that [X,Di] =
∑

φjDj},

where Di is the restriction of Di to E∞.

X ∈ DE sends solutions to solutions.
X,Y ∈ DE are equivalent

if they generate the same flow in the space of solutions of E .
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black and red are equivalent
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TRIVIAL CONTACT FIELDS
CDE = {X =

∑
fiDi}
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X ∼ Y ⇔ X − Y ∈ CD(E)

sym E =
DC(E)
CD(E)

HIGHER SYMMETRIES OF E

sym E = H0(Horizontal Jet Spencer Complex on E(∞))
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SECONDARY VECTOR FIELDS ON J∞

κ = sym J∞ = {�ϕ | ϕ = (ϕ1, . . . , ϕm), ϕi ∈ C∞(J∞)}

�ϕ
def=

∑
σ,i

Dσ(ϕi)
∂

∂uiσ
, Dσ = Dσ1

1 ◦ · · ·Dσn
n

ϕ is generating function of χ = �ϕ mod CD(J∞)
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HORIZONTAL COHOMOLOGY

Λ
i
(E∞) def=

Λi(E∞)
CΛi(E∞)

, d : Λ
i → Λ

i+1
,

where CΛ(E∞) is the ideal of the differential forms vanishing on
the Cartan distribution.
Horizontal de Rham complex of E∞:

0→ Λ
0
(E∞) = C∞(E∞) d−→ Λ

1
(E∞) d−→ · · · d−→ Λ

n
(E∞)→ 0

Cohomologies of this complex H
i
(E∞) are called horizontal.

INTERESTING TERMS:

• Lagrangians: H
n
(J∞(E,n));

• Conservation laws: H
n−1

(E∞).
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C-SPECTRAL SEQUENCES

Take now the powers of CΛ∗(E∞):

filtered complex: Λ∗(E∞) ⊃ CΛ∗(E∞) ⊃ C2Λ∗(E∞) ⊃ · · ·
⇓

the associated spectral sequence {Ep,qr , dp,qr } is called C–spectral

INTERESTING TERMS:

• Euler operator: d0,n
1 ;

• LHS of E–L equations: E1,n
1 ;

• Helmholtz conditions: E2,n
1
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Cohomology vs. Topology
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Outline

1 Review of Jet Spaces and their Natural Structures

2 Jet Spaces of Pairs of Manifolds
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Definition

Now we fix two numbers n2 ≥ n1, and k ≥ l.
Define

Jk,l(E,n2, n1)

as the subset of
Jk(E,n2)×E J l(E,n1)

made by those elements ([L2]ky , [L1]ly) such that

L2 ∼ky L1.
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Flag bundles

This construction is just a differential generalization of a
well–known concept: the flag!

J1,1(E,n2, n1) = Gr (TE, n2, n1)
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Normal bundles
The bundle

ν∞ : J∞,1(E,n, n− 1) −→ J1(E,n− 1)

naturally interpreted as the normal bundle, is fundamental in the
cohomological approach to natural boundary conditions.

G. Moreno, GIQ Proceedings, 2009
G. Moreno and A. Vinogradov, Doklady Mathematics, 2007
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Canonical embedding into
iterated jet spaces

LEMMA
J∞,∞(E,n2, n1) is embedded canonically into J∞(J∞(E,n2), n1).

Indeed, for any point ([L2]∞y , [L1]∞y ) the jet prolongation

j∞(L2) : L2 −→ J∞(E,n2)

can be used to lift L1 inside J∞(E,n2).
So we obtain the n1–dimensional submanifold (j∞(L2))(L1), of
which we can take the ∞–jet at the point [L2]∞y :

([L2]∞y , [L1]∞y ) 7−→ [(j∞(L2))(L1)][L2]∞y
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The space of initial data

In the case n2 = n and n1 = n− 1, then

E = {(φj(σ+ln))(µ) = φj(σ+1µ+ln) + φjσ+(l+1)n
t(µ)}∞

is the defining equation of J∞,∞(E,n, n− 1).

DEFINITION
J∞,∞(E,n, n− 1) is the diffiety of initial data.
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Structure of J∞,∞(E, n, n− 1)

From

J∞(J∞(E,n), n− 1)

J∞,∞(E,n, n− 1)

p
vvlllllllllllll

q

))SSSSSSSSSSSSSS

OO

J∞(E,n) J∞(E,n− 1)

it looks evident that J∞,∞(E,n2, n1) possesses an inherited
(n− 1)–dimensional distribution D, and two infinite–dimensional
distributions. Denote by C̃ the one induced by p∗.
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Jet–prolongations

Any n–dimensional manifold L produces the embedding j̃∞(L) of
J∞(L, n− 1) into J∞,∞(E,n, n− 1), which closes the diagram

J∞(L, n− 1)
ej∞(L)//

π∞,0

��

J∞,∞(E,n, n− 1)

p

��
L

j∞(L) // J∞(E,n)
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Lifted equation

Leaves of C̃ are precisely the embedded jet spaces J∞(L, n1), and
as such are in one–to–one correspondence with the leaves of C in
J∞(E,n).
In other words, any equation E is equivalent to its own lifting
Ẽ = p∗(E).
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Cohomology

Two non–trivial results can be proved:
• the D–spectral sequence is one–line;
• the term E1 of the C̃–spectral sequence is trivial above the
line q = n
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Main conjecture

The following result, originally proposed by L. Vitagliano
(unpublished note), has not yet been proved in general, but it
holds true accordingly to C. Rovelli, in his paper Covariant
hamiltonian formalism for field theory: Hamilton-Jacobi equation
on the space G, arXiv:gr-qc/0207043v2, where G is his own
version of the space of initial data.

CONJECTURE
Denote by V sym (ẼEL) the Lie algebra of p–vertical ∞–esimal
symmetries of ẼEL. Then

EEL ∼=
ẼEL

V sym (ẼEL)
,

i.e., the space of trajectories of V sym (ẼEL) is made of null
directions of a suitable (secondary) symplectic 2–form.


	Review of Jet Spaces and their Natural Structures
	Jet Spaces of Pairs of Manifolds

