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Dispersion

Definition. A linear partial differential equation is called
dispersive if the different Fourier modes travel unaltered

but at different speeds.

Substituting |
U(t,ﬂ?) _ el(ka:—wt)

produces the dispersion relation
w = w(k)

relating frequency w and wave number k.

Phase velocity: ¢, =

k
. dw .
Group velocity: ¢, = 7 (stationary phase)



A Simple Linear Dispersive Wave Equation:

ou  O%u
ot  Ox3
—> linearized Korteweg—deVries equation
Dispersion relation: w = k3
, W
Phase velocity: ¢, = = k*
k
dw
Group velocity: ¢, = — = 3k*

Thus, wave packets (and energy) move faster (to the right) than
the individual waves.



Linear Dispersion on the Line

ou  u

9t O3 u(0,7) = f(x)



Linear Dispersion on the Line

ou  O3u
9% 93 u(0,7) = f(x)
Fourier transform solution'
3
(t CU / k:a:—}—k: t) dk
\/27r



Linear Dispersion on the Line

ou  3u
9% 93 u(0,z) = f(z)
Fourier transform solutiorr
l CU / kx+k3t) dk
ult, \/27r
Fundamental solution u(0,2) = ()

1 oo 3 1
u(t,x):ﬂ/_mel(kwrk Dk =~ Ai( . )
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Linear Dispersion on the Line

o _ o
ot Ox3

ulto) = —= [ 7€) A (’”‘Bf) d

u(0,z) = f(z)




Linear Dispersion on the Line

ou Ou
=73 u(0,z) = f(x)
) = g [ 000 (g )
- 75 st
. e e e 0’ TS 0’
Step function initial data: w(0,z) = o(x) = { 1, z>0.



Linear Dispersion on the Line

ou Ou
=73 u(0,z) = f(x)
utt) = 5 [ 1l i TE ) e
- 75 st
0, z<0,
Step function initial data (0, ) (z) = { 1, >0
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Periodic Linear Dispersion

ou_ o
ot Ox3
ou ou 0%y
u(t, ) . (t,—m) = . (¢, ) 2 (t,—m) =

52 (67)



Periodic Linear Dispersion

ou_ o
ot 03
du du 0%u
u(t,—m) = u(t, ) . (t,—m) = . (¢, ) 2 (t,—m) =

Step function initial data:

u(0,2) =o(x) =



Periodic Linear Dispersion

ou_ ot
ot Ox3
ou ou 0%u 0%u
U(t, —7T) = U(t, 7T) % (t, —7T) = % (t, 7'(') @ (t, —7T) = @ (t, 7T)
Step function initial data:
0, x<0,
u(0,z) =o(x) = { >0

sin((2j+ 1)z — (25 +1)%¢t)
27 +1 '
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Theorem. At rational time ¢t = 27w p/q, the solution u*(¢, ) is
constant on every subinterval 27j/q < z < 27(j + 1)/q.
At irrational time w*(¢,x) is a non-differentiable continuous
function.



Lemma.

k=—oc0
is piecewise constant on intervals 27j/q < x < 27 (j +1)/q
if and only if
¢, =¢, k=1%#0 mod g, ¢, =0, 0#Fk=0 mod gq.
where

2mkc,
iq(e—2i7'rk:/q _ 1)

A~

Ck:

k # 0 mod q.

—> DFT



The Fourier coefficients of the solution u*(¢,x) at rational time
t =27mp/q are

where, for the step function initial data,
—i/(mk), k odd,
b.(0) =1 1/2, k=0,
0, 0 # k even.
Crucial observation:
if k=1 mod ¢, then k*=1> mod g

and so
ei(k:a;—27‘rk:3p/q) _ ei(lac—271'l3]o/q)



The Fundamental Solution
F(0,z) = d(x)

Theorem. At rational time ¢ = 27 p/q, the fundamental
solution to the initial-boundary value problem is a linear
combination of finitely many periodically extended delta
functions, based at 27 j/q for integers —%q < g < %q.



The Fundamental Solution
F(0,z) = d(x)

Theorem. At rational time ¢ = 27 p/q, the fundamental
solution to the initial-boundary value problem is a linear
combination of finitely many periodically extended delta
functions, based at 27 j/q for integers —%q < g < %q.

Corollary. At rational time, any solution profile u(27p/q, x)
to the periodic initial-boundary value problem depends on
only finitely many values of the initial data, namely

u(0,z;) = f(z;)

where z,; = x + 27 j/q for integers —%q <7< %q.



* % The same quantization/fractalization phenomenon
appears in any linearly dispersive equation with “integral
polynomial” dispersion relation:

w(k)= > ¢ k™
m=0

where



Linear Free-Space Schrodinger Equation

. Ou  0%u
i—=—
ot Ox?
Dispersion relation: w = k?
: W
Phase velocity: Cp = = k
dw
Group velocity: c,6 = = —2k

97 dk



Periodic Linear Schrodinger Equation

oo
1(’%_8932
ou ou

u(t, —m) = u(t, ) P (t,—m) = . (¢, )

Michael Berry, et. al.
Bernd Thaller, Visual Quantum Mechanics

Oskolkov

Kapitanski, Rodnianski
“Does a quantum particle know the time?”

Michael Taylor
Fulling, Guintiirk



William Henry Fox Talbot (1800—-1877)




* Talbot’s 1835 image of a latticed window in Lacock Abbey

—> oldest photographic negative in existence.



The Talbot Effect

Fresnel diffraction by periodic gratings (1836)

“It was very curtous to observe that though the grating was
greatly out of the focus of the lens ... the appearance of
the bands was perfectly distinct and well defined ... the
experiments are communicated in the hope that they may
prove interesting to the cultivators of optical science.”

— Fox Talbot

—> Lord Rayleigh calculates the Talbot distance (1881)



The Quantized / Fractal Talbot Effect
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e Optical experiments — Berry & Klein

e Diffraction of matter waves (helium atoms) — Nowak et. al.



Quantum Revival

e Electrons in potassium ions — Yeazell & Stroud

e Vibrations of bromine molecules —
Vrakking, Villeneuve, Stolow



Periodic Linear Schrodinger Equation

. Ou  O%u
i — ==

ot 0x?

ou ou
t,—7) = ult ot —m) = — (¢
ult,—m) = ult,m) oo (b= = oo (6
Integrated fundamental solution:
1 00 ei(k:x+k2t)
t = —

* For x/t € Q, this is known as a Gauss (or, more generally,
Weyl) sum, of importance in number theory

—> Hardy, Littlewood, Weil, I. Vinogradov, etc.



Integrated fundamental solution:
1 o0 el (k x+k>t)

2 k

k=—o0

u(t,x) = —
2T
0#

Theorem.

e The fundamental solution Ou/dx is a Jacobi theta function. At
rational times t = 27 p/q, it linear combination of delta

functions concentrated at rational nodes z; = 27j/q.

e At irrational times t, the integrated fundamental solution is a
continuous but nowhere differentiable function.

(Claim: The fractal dimension of its graph is 2.)



Schrodinger Carpet



Periodic Linear Dispersion

% = L(D,)u, u(t,x +2m) = u(t, )
Dispersion relation:
u(t,z) = et ket — (k) = —iL(—ik) assumed real
Riemann problem: step function initial data
0, x<0,
uw(0,2) =o(x) = { L 250
Solution:

> sin[ (25 + 1)z —w(k)t]
EZ:O 27+ 1 '

* % w(—k) = —w(k) odd

Polynomial dispersion, rational ¢ = Weyl exponential sums

u(t,x) ~

N | =



2D Water Waves

/\

y=h+mn(t,z) surface elevation

o(t,z,y) velocity potential



2D Water Waves

Incompressible, irrotational fluid.

No surface tension

¢ +502+50.+gn=0

Ny = @y — NpPy
Py T Pyyy =0 0<y<h+n(tx)
qbyzo y=20

Wave speed (maximum group velocity): ¢ =+/gh
Dispersion relation: \/g k tanh(hk) =ck — %ch2k3 + ...

} y:h+77(t755)
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Small parameters — long waves in shallow water (KdV regime)
a h?



Rescale:
0t

r — fx y — hy t— —

C
al
no— an 6 — 7 ¢ c=1/gh

C

Rescaled water wave system:
!

9 2
- — 0
1 y=1+4+an
nt:B¢y_Oé77x¢gj
B @pyp+ @y =0 O<y<l+an

¢, =0 y =20



Boussinesq expansion
Set

Y(t,x) = ¢(t,z,0) u(t,x) = ¢ (t,x,0) 0<6<1

Solve Laplace equation:
o(t,z,y) = b(t,x) = 32V + 5 00 Ve +
Plug expansion into free surface conditions: To first order
Yo+ band—10¢,,, =0
N+ Y, + () — 58 Vpes =0



Bidirectional Boussinesq systems:

u, +m, + ouu, — 3307 —1)u,,, =0

xxt
77t+u:c+a(77u)x_% (392_ 1)“’333333 =0

* & at # =1 this system is integrable

—> Kaup, Kupershmidt

Boussinesq equation
_ 1 2 1
Upp = Uy, + 5 & (u )mw T Eﬁuxa:acx
Regularized Boussinesq equation

_ 1 2 1
Upp = Uy, + 5 & (u )mw T Eﬁummtt

—> DNA dynamics (Scott)



Unidirectional waves:

u=n—gan’+(5—50%) 00, +

Korteweg-deVries (1895) equation:
M+ 1+ 50NN, + 5 gy =0

—> Due to Boussinesq in 1877!

Benjamin—Bona—Mahony (BBM) equation:

M+ Ny +5ann, —& 060, =0



Shallow Water Dispersion Relations

Water waves + Vk tanh k
: k
Boussinesq system + —
J1+32k?
. . 1
Boussinesq equation + k14 3k?
Korteweg—deVries k — %kg
k
BBM 1
1+ g k?




Dispersion Asymptotics

* % The qualitative behavior of the solution to the periodic
problem depends crucially on the asymptotic behavior of the
dispersion relation w(k) for large wave number k — 4+ oco.

w(k) ~ k“
o a=20 — large scale oscillations
e 0<a<1l — dispersive oscillations
o a=1 — traveling waves
e 1 <a<?2 — oscillatory becoming fractal

o a>2 — fractal/quantized



Periodic Korteweg—deVries equation

ou du ou
E‘O‘ﬁJrﬂu% u(t,x + 20) = u(t, x)

Zabusky—Kruskal (1965)
a=1, £ =.000484, (=1, u(0,z) = cos .
Lax—Levermore (1983) — small dispersion
a — 0, 6 =1.
Gong Chen (2011)
a=1, g=1, =2, u(0,z) = o(x).



Periodic Korteweg—deVries Equation

Analysis of nonsmooth initial data:
Estimates, existence, well-posedness, stability, ...
e Kato
e DBourgain
e Kenig, Ponce, Vega
e C(Colliander, Keel, Staffilani, Takaoka, Tao
e Oskolkov
e D. Russell, B-Y Zhang

e Erdogan, Tzirakis



Future Directions

General dispersion behavior

Other boundary conditions (Fokas)

Higher space dimensions and other domains (tori, spheres, ..

Dispersive nonlinear partial differential equations
Numerical solution techniques?

Experimental verification in dispersive media?

)



