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Compactons

A compacton is a solitary wave with compact support which

preserves its shape after interacting with another compacton.

P. Rosenau, J. M. Hyman, Compactons: Solitons with Fi-

nite Wavelength, Phys. Rev. Lett. 70 (1993), 564–567.
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History

Compactons have first emerged as solutions of fully non-

linear Korteweg-de-Vries-like equations (the K(m,n) equa-

tions):

ut +D3
x(un) +Dx(um) = 0,

which have first appeared in Rosenau, Hyman (1993); here

Dx denotes the total x-derivative

Dx =
∂

∂x
+
∞∑
j=0

uj+1
∂

∂uj
,

uj denotes jth derivative of u with respect to x, u0 ≡ u,

m,n > 1, t is the time and x is the space variable.
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Generalized K(m,n) equations

Although the solitary waves have compact support only if

n > 1 and a compacton is a solution for a K(m,n) equation

in the classical sense only for n ≤ 3 (Rosenau, Hyman,

1993), it is natural to study a slighly more general form of

these equations (generalized K(m,n) equations):

ut = aD3
x(un) + bDx(um), (1)

where a 6= 0 and b,m, n are arbitrary real numbers.
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Hamiltonian structure of the K(m,m) equations

If m = n, these equations are easily seen to be Hamiltonian:

ut = aD3
x(um) + bDx(um) = DδH, (2)

where D = aD3
x + bDx is a Hamiltonian operator, H =

∫ ∫
umdudx and δ denotes the variational derivative of a func-

tional with respect to u:

δ
(∫

p(x, u, ux, . . . , um)dx
)

def
=

δp

δu

def
=

∞∑
j=0

(−Dx)j
 ∂p
∂uj

 .
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Integrable or non-integrable?

The pseudo-differential operator D−1 is easily seen to be

a formal conservation law of rank ∞ for (2) This means

that an infinite set of “standard” obstacles for existence of

infinitely many conservation laws of increasing order for (2)

vanishes, and therefore one could expect that this equation

should share at least some of the properties of integrable

PDEs. However, in 1996, Rosenau identified only the equa-

tions K(−2,−2) and K(−1
2,−

1
2) as integrable.
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Our goals

• to find out whether the generalized K(m,m) equations

(1) are integrable for any other values of m than those

identified by Rosenau

• to describe all symmetries and conservation laws for all

non-integrable cases of generalized K(m,m) equations
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Basic definitions I

Consider an evolution equation

ut = F (x, u, u1, . . . , uk), k ≥ 2. (3)

A (smooth) function f is local if it depends at most on

x, t, u and a finite number of uj.

A local function G = G(x, t, u, u1, . . . , us) is called a (char-

acteristic of ) generalized symmetry for (3) if

Dt(G) = DF(G)

where Dt = ∂/∂t+
∞∑
j=0

D
j
x(F )∂/∂uj is the total t-derivative,

and DF =
k∑

j=0
∂F/∂ujD

j
x.
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Basic definitions II

A formal symmetry of order q for (3) is a formal series of

the form
L =

1∑
j=−∞

ajD
j
x,

where aj are local functions, such that the formal series

Dt(L)− [DF ,L]

is of degree not greater than k + 1− q.

The equation (3) is called symmetry integrable if it admits

an infinite sequence of explicitly time-independent general-

ized symmetries of increasing order.
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The symmetry approach to integrability I

A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, The Sym-

metry Approach to Classification of integrable equations,

in What is Integrability?, V. E. Zakharov (ed.), 115–184,

Springer 1991.

A. B. Shabat, A. V. Mikhailov, Symmetries - Test of Inte-

grability. Important developments in soliton theory, 355–

374, Springer 1993.

9



The symmetry approach to integrability II

Theorem 1 (Mikhailov, Shabat, Yamilov 1987). An equa-

tion (3) possesses an explicitly time-independent formal

symmetry of order N > k if and only if the first N − k

canonical densities ρi, i = −1,0,1,2, . . . , N − k− 2, are den-

sities of local conservation laws.

Existence of an explicitly time-independent formal symme-

try of order q is a necessary condition for (3) to possess

explicitly time-independent generalized symmetries with the

characteristic of order q.
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The symmetry approach to integrability III

Explicit formulas for a few first canonical densities can be

found e.g. in Mikhailov, Shabat (1991). For instance, we

have

ρ−1 = (∂F/∂uk)−1/k. (4)

It is readily checked that for m 6= −2,−1/2,0,1 this quantity

is not a conserved density for (2), so by Theorem 1 equation

(2) for these m has no explicitly time-independent formal

symmetry and no explicitly time-independent generalized

symmetry of order greater than 3.
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Symmetries of generalized K(m,m) equations

Proposition 1. If m ∈ R \ {−2,−1/2,0,1}, then the corre-

sponding generalized K(m,m) equation (2) has no explicitly

time-independent generalized symmetries of order greater

than 3; in particular, eq. (2) is not symmetry integrable.

Using Theorem 2 from Sergyeyev, arXiv:solv-int/9902002,

this result can be further extended to cover explicitly time-

dependent symmetries as well:

Proposition 2. If m ∈ R \ {−2,−1/2,0,1}, then the corre-

sponding generalized K(m,m) equation (2) has no general-

ized symmetries, including explicitly time-dependent ones,

of order greater than 3.
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Complete list of symmetries for K(m,m) equations

Theorem 2. For m ∈ R \ {−2,−1/2,0,1} the generalized

K(m,m) equation (2) has just three local generalized sym-

metries with the characteristics

Q1 = ux, Q2 = ut, Q3 = (m− 1)tut + u,

i.e., x- and t-translations and the scaling symmetry.

There are no conservation laws associated (through the

Hamiltonian operator D) to the first and third symmetry.

The conserved functional associated to the second symme-

try through D is the energy.
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Densities of conservation laws I

Theorem 3. If ρ is a density of a local conservation law for a

generalized K(m,m) equation, where m ∈ R\{−2,−1/2,0,1},

then it is, up to the addition of a trivial density, a function

of x, t and u only.

Proof. Let ρ be a density of a local conservation law for the

K(m,m) equation, m ∈ R \ {−2,−1/2,0,1}. Then γ = δρ
δu

satisfies Dt
(
δρ
δu

)
+ D∗F

(
δρ
δu

)
= 0, i.e., γ is a cosymmetry for

(2). Then D(γ) = (aD3
x + bDx)(γ) is a symmetry of our

equation (2). By Proposition 2, ord D(γ) ≤ 3, therefore,

ord γ ≤ 0, i.e., γ = γ(x, t, u), and to it there corresponds a

density ρ =
∫
γdu which also depends only on x, t, u.
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Complete list of conservation laws

Theorem 4. The only local conservation laws of the form

Dt(ρ) = Dx(σ) for the generalized K(m,m) equation (2)

with m ∈ R \ {−2,−1/2,0,1}, are, modulo the addition of

trivial conservation laws, just the linear combinations of

the four conservation laws which for b 6= 0 are given by the

formulas

ρ1 =
∫
umdu, σ1 =mauxxu

2m−1 +
am(m− 2)u2

xu
2m−2 + bu2m

2
ρ2 = u, σ2 = aD2

x(um) + bum

ρ3 =u sin
(√

b√
a
x
)
, σ3 =aD2

x(um) sin
(√

b√
a
x
)
−
√
abDx(um) cos

(√
b√
a
x
)

ρ4 =u cos
(√

b√
a
x
)
, σ4 =aD2

x(um) cos
(√

b√
a
x
)

+
√
abDx(um) sin

(√
b√
a
x
)
.
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Complete list of conservation laws for b = 0

If b = 0, then the conservation law with the density ρ3 is

trivial, and the densities ρ2 and ρ4 coalesce. However, there

are two other conservation laws in such a case, namely

ρ5 = xu, σ5 = aD2
x(xum)− 3aDx(um)

ρ6 = x2u, σ6 = aD2
x(x2um) + 6aum − aDx(xum),

i.e., for b = 0 equation (2) with m ∈ R \ {−2,−1/2,0,1}

also has, up to the addition of trivial conservation laws,

just four conservation laws with the densities ρ1, ρ2, ρ5, ρ6

and the fluxes σ1, σ2, σ5, σ6.
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The conservation laws for ab < 0

If a and b have different signs, it is convenient to divide ρ3

by the imaginary unit i and use the following real densities

and fluxes instead of the above ρ3, ρ4, σ3 and σ4:

ρ̃3 = cu sinh


√
|b|√
|a|
x


σ̃3 = caD2

x(um) sinh


√
|b|√
|a|
x

− √
|ab|Dx(um) cosh


√
|b|√
|a|
x


ρ̃4 = u cosh


√
|b|√
|a|
x


σ̃4 = aD2

x(um) cosh


√
|b|√
|a|
x

− c√|ab|Dx(um) sinh


√
|b|√
|a|
x

 ,
where c = 1 if a > 0 and b < 0, and c = −1 if a < 0 and

b > 0.
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Conserved functionals

The conserved functional corresponding to the first con-

served density is the energy, i.e., the integral of motion

associated with the invariance under the time shifts.

The remaining conserved functionals are Casimir function-

als corresponding to our Hamiltonian operator D, so finding

a suitable physical interpretation thereof is rather unlikely.
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Conclusions

• We have proved that all the generalized K(m,m) equa-

tions where m ∈ R \ {−2,−1/2,0,1} are not symmetry

integrable

• We have found all generalized symmetries of the non-

integrable cases of the generalized K(m,m) equations.

• We have obtained the complete list of conservation laws

for the non-integrable cases of the generalized K(m,m)

equations.
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The procedure of finding of all conservation laws

We consider an k-th order Hamiltonian equation ut = D(δH)

1. not all canonical densities are conserved densities =⇒

symmetry non-integrability

2. only the N − k first canonical densities are conserved

densities =⇒ N is the maximal order of all generalized

time-independent symmetries

3. prove that there are no time-dependent symmetries of

the order greater then N (a problem!!)

4. if ρ is a conserved density, then δρ/δu is a cosymme-

try and D(δρ/δu) is a symmetry and its order is already

known
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Outlook

It would be interesting to apply our method for proving

nonexistence of higher conservation laws using existence of

a Hamiltonian operator to other nonintegrable systems.
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Thank you for your attention!
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