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Introduction

Surface theory in R? plays a crucial role in differential geometry,
partial differential equations (PDEs), string theory, general theory of
relativity, and biology [Parthasarthy and Viswanathan, 2001] -
[Ou-Yang et. al., 1999].

There are some special subclasses of 2-surfaces which arise in the
branches of science.

e Minimal surfaces: H = 0,

o Surfaces with constant mean curvature : H = constant,

Surfaces with constant positive Gaussian curvature:
K = constant > 0,

Surfaces with constant negative Gaussian curvature:
K = constant < 0,

o Surfaces with harmonic inverse mean curvature: V2(1/H) = 0,
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Introduction

e Bianchi surfaces: V?(1/vK) =0 and V?(1/v—K) = 0, for
positive Gaussian curvature and negative Gaussian curvature,
respectively,

e Weingarten surfaces: f(H, K) = 0. For example; linear Weingarten
surfaces, ¢ H 4+ co K = ¢3, and quadratic Weingarten surfaces,
caH?> +cs HK + cg K?> + ¢7 H + cg K = ¢g, where c; are constants,
j=1,2,..09,

o Willmore surfaces: V2H +2 H(H? — K) = 0,

e Surfaces that solve the shape equation of lipid membrane:
p—2wH + k. V?(2H) + k(2H + ¢o)(2H? — coH — 2K) = 0,
where p, w, k., and ¢y are constants.
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Introduction

Soliton equations play a very practical role for the construction of
surfaces.

The theory of nonlinear soliton equations was developed in 1960s.

Lax representation of nonlinear PDEs consists of two linear equations
which are called Lax equations

e, =UP, &=V, (1)
and their compatibility condition

where z and t are independent variables. Here U and V' are called Lax
pairs.
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Introduction

The relation of 2-surfaces and integrable equations is established by the
use of Lie groups and Lie algebras.

Using this relation, soliton surface theory was first developed by Sym
[Sym, 1982]-[Sym, 1985]. He obtained the immersion function by using
the deformation of Lax equations for integrable equations.
— quag

F
ON’

(3)

Fokas and Gel'fand [Fokas and Gelfand, 1996] generalized Sym’s result
and find more general immersion function.

oD
F=a® 'U®+ ax® VP + a@‘lﬁ +az®'UD
+a3t® VO L+ MO, (4)

where a;, 1 =1,2,3,4,5 and M € g are constants.
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On the other hand, there are some surfaces that arise from a variational
principle for a given Lagrange function. Examples of this type are

e Minimal surfaces

o Constant mean curvature surfaces

e Linear Weingarten surfaces

e Willmore surfaces

o Surfaces solving the shape equation

Taking more general Lagrange function of the mean and Gaussian
curvatures of the surface, we may find more general surfaces that solve
the generalized shape equation (see

[Tu and Ou-Yang, 2004]-[Tu, 2001]) . Examples for this type of
surfaces can be found in [Giirses, 2002] - [Giirses and Tek, 2014].

Examples of some of these surfaces such as Bianchi surfaces
[Bobenko, 1990] and Willmore surfaces [Willmore, 1982],
[Willmore, 2000] are very rare.
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Introduction

The main reason is the difficulty of solving corresponding differential
equations.

For this purpose, some indirect methods [Sym, 1982]-[Cieslinski, 1997]
have been developed for the construction of two surfaces in R? and in
Ms.

Among all different methods, soliton surface technique is a very

effective method.

In this method, one mainly uses the deformations of the Lax equations
of the integrable equations

[Sym, 1982],[Fokas and Gelfand, 1996],[Ceyhan et. al., 2000],[Fokas et. al.

Sine Gordon (SG) equation

Korteweg de Vries (KdV) equation
e Modified Korteweg de Vries (mKdV) equation
e Nonlinear Schrodinger (NLS) equation
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Introduction

This talk contains a collection of the authors’ works on surfaces and
curves, in particular on soliton surfaces
[Giirses, 1998],[Giirses, 1984],[Ceyhan et. al., 2000],[Glirses, 2002],

[Tek, 2007], [Tek, 2007],[Tek, 2009],[Tek, 2015],[Giirses and Tek, 2014]
[Giirses and Nutku, 1981].
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Introduction to Curves and Surfaces in R” Curves in R”

Let {t,n, b} defines a triad at every point of curve and forms a base at
that point. Here t,n, and b denote tangent, normal, and binormal
vectors, respectively (Frenet Frame).

Let {,) be the standard inner product in R?. The orthonormal base
{t,n, b} satisfy the following orthogonal conditions

(t,t) = (n,n) = (b,b) = 1. (5)

This triad is called Serret-Frenet (SF) triad and it’s change with
respect to t is defined by the following SF equations

t = kn, (6)
n=—kt— b, (7)
b = 7. (8)
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on to Curves

Let F and €2 be defined, respectively, as

E = (t,n,b)", (9)
0 k£ O

Q= -k 0 —1 |. (10)
0O 7 0

Here €2 is an antisymmetric and traceless matrix.

We can write the SF equations in terms of E and §2 as follows

dE

— =QE. 11
g (11)
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Introduction to Curves and Surfaces in R” Curves in R”

Instead of R3, if we take three dimensional Minkowski space (M3), SF
equations will be different.

Let (,) be inner product in M3. The orthonormal base {t,n, b} satisfy
the following orthogonal conditions

(t,t) =1, (n,n) = —1, (b,b) = —1. (12)

With this orthogonal conditions SF equations take the following form

t = kn, (13)
f = kt — 7b, (14)
b = n. (15)

For the relation between soliton equations and SF equations in
different three dimensional geometries (R3 or M3) with different
signature see [Giirses, 1998].
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Introduction to Curves and Surfaces in R” Surfaces in R

Let’s define a surface in R? as a map Y : O — R3, where O is an open
set in R?.

Position vector of the surface at every point is defined as
Y (x,t) = (y' (2, 1),y% (2, 1), y* (1)), where (z,t) € O,

Define a triad {Y,, Y, N} at every point of surface and forms a basis
for R3 at these points.

Here Y ; and Y ; are the tangent vectors of the surface, N is a unit
normal vector. For the smooth surfaces N is given as

YJ X Y7t

N=_—+—".
’ny X Y7t|

(16)
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Introduction to Curves and Surfaces in R” Surfaces in R

The equations which gives the change of this triad is called
Gauss-Wengarten (GW) equations and they are given as

Y, = Ffj Y +hiy N, (17)
N;=—g"h; Yy, (18)

gi; and h;; denote the coefficients of the first and second fundamental
forms, respectively.

We can find the fundamental forms as

gi; = (Y i, Y j), (19)
hij = (N, Y ;5) = —(N, Y ) (20)

The Christoffel symbol F;k is defined as

) 1 .
k= 59” 91,6 + Gir,j — G- (21)
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Introduction to Curves and Surfaces in R” Surfaces in R

Compatibility conditions of GW equations given in Egs. (17) and (18)
yields Gauss-Codazzi (GC) equations

Rl = "™ (hmichji — haihit), (22)
hij,k — F%hm]’ = hik,j — F;n;hmk, (23)

The Gaussian (K) and mean (H) curvatures of a surface in R? are
given as

1
K =det(g'h), H = gtrace(gflh) (24)

Now we give the following proposition locally.

Proposition

Let Y (x,t) and Y +(z,t) be independent differentiable vectors in R3.
If Y ot = Y 1, then there exist a unique surface that accept these
vectors as its tangent vectors at every point of it. (It is unique except
isometric ones.)
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Introduction to Curves and Surfaces in R” Surfaces in R

Example

If we consider the first fundamental form as
ds? = sin? Odz? + cos? Odt?,
Gaussian curvature satisfy the following equation
1.
Opy — O = §K sin(26).
If we take the first fundamental form as
ds? = du® + dv?® — 2 cos fdu dv,

Gaussian curvature satisfy the following equation

Ouy = Ksin 6.

(26)
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From Differen

We shall be interested in curves where their curvature k and torsion 7
satisfies certain coupled nonlinear PDEs.

From the fundamental theorem of the local theory of curves there
exists up to isometries, a unique curve for given the functions k£ and 7.

Hence every distinct solution of PDE satisfied by k& and 7 define a
unique, up to isometries, a unique curve in R? or in Mj.

For the plane curves, given the curvature function k , up to isometries,
we can determine the corresponding curve uniquely. As an example let

k =1/cosh®s
then the corresponding curve is a catenary

a = (s, cosh s)
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From Curves to Differential Equations

SF equations defines how the SF triad £ = (t,n,b)” defined at every
point of the curve moves along the curve.

If the curve moves on a surface (S) at the same time, we should be able
to write how it changes in the direction of the movement.

Let the surface be parameterized as (s,t) € O — S, such that s is arc
length parameter and ¢ is the second parameter of the surface S.

The motion of curve is defined as the derivative of the SF triad with

respect to variable ¢ as

dE
—=TF 29
Torp, (29)

Here I is a traceless 3 x 3 matrix. The entries of this matrix is not
free. As we mentioned earlier, SF equations can be written in the
following form

dE

— =QF 30
1 (30)
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From Curves to Differential Equations

where Q is given by Eq. (10).

The compatibility condition of SF equations and the equation [(29)]
defines the ¢ change gives the following equation

QU -T,+QIr-TQ=0. (31)

Using this equation we can find the entries of I' in terms of the
curvature k and the torsion 7.

For the plane curves, the change of the position vector o with respect
to s and tare given by

da
d
d—(Z = pn + wt, (33)

where p and w are some functions of s and t.
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From Curves to Differential Equations

The compatibility conditions of the equations [Egs. (32) and (33)]
results the following equations

ws = kp, (34)
t; = (ps + kw)n. (35)

Eq. (35) gives the ¢ change of the tangent vector.

If we look the compatibility conditions of this equation with SF
equation dt/ds = kn, we obtain the following equations

ki = (ps +w k)& (36)
n; = —(ps + kut. (37)

s derivative of the normal vector from SF equation is given as

dn/ds = —kt. (38)
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From Curves to Differential Equations

Hence the entries of the I' matrix are found.
If we substitute w given by Eq. (34) into the equation [Eq.(36)], we
obtain the following equation

k, = D*p+ k*p + ki / kp ds, (39)

where D = 9/0s.

This equation reminds us the recursion operator R of the mKdV
equation.

Eq. (39) can take the appropriate form with a simple calculation.
ky=Rp, R=D*+k*+ kD 'k, (40)

where R is the recursion operator of mKdV equation and D~ is the
integral operator
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From Curves to Differential Equations

For example, if we take p = kg, then k satisfies the mKdV equation

3

ky = ksss + §k2k5. (41)

In general, p(s,t) is a free function. When we take p = R"ks, Eq. (40)
gives the mKdV hierarchy, where n is positive integer.

Every solution of the mKdV equation, especially soliton solutions, give
different curves in the plane.

As far as we know, this side of the problem hasn’t been worked that
much.

Another point that we should mention is the arbitrary choice of the
function p results different curves whereas the equation satisfied by &
does not have to be integrable.

For example, if we choose p = kk;, the equation we obtain from Eq.
(40) is not integrable.
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From Curves to Differential Equations

In R3, there will be a separate equation for the torsion function .

Following the similar approach, a coupled nonlinear PDEs are obtained
for k and 7. For more details see [Giirses, 1998] .

Minkowski plane curves are also studied in that article.

In this way, some new equations are obtained those couldn’t be
obtained from the plane curves in R3.

As an example, let’s consider a three dimensional general space with
the signature 1+ 2¢ (e is 1 and —1 for R® and Mj, respectively).

We can find mKdV equation with both signature on plane curves as
ki = kgss + (3/2)ek2 ks using the method described above.

Additionally for obtaining the NLS equation one can look
[Hasimoto, 1972] and [Lamb, 1977].

Hasimoto is trying to find relationship between tornado in nature and
solutions of the NLS equation.
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Integrable Equations

If a given PDE satisfy one of the following is called integrable;
i) It has a Lax representation,

ii) It has Painleve property,

iii) It has zero curvature representation,

)
)
iv) It has Bécklund transformation,
)
)

v) There exist infinitely many conserved quantities,

vi) It has a recursion operator

Lax equations have different formulations depending on the algebra of
the Lax operator belongs to.

For example, Lax operator can be in pseudo-differential operator
algebra, polynomial algebra, or matrix algebra.

We will consider the Lax representation in the matrix algebra. Since
we will work with single PDE, 2 x 2 matrices will be enough.

Metin Giirses (Bilkent Univ.) Integrable Curves and Surfaces June 5-10, 2015 24 / 151



Integrable Equations

Definition
(Lax Equations) Let ®(x,t, \) be SU(2) valued function such that

(z,t) € O C R2, and X\ € C is spectral parameter. Lax equations are
defined as

o, =Ud, &, =V0, (42)

where U(x,t,\) and V (z,t,\) are su(2) valued functions and they
satisfy the following equation

Ui — Ve +[U,V]=0. (43)

Eq. (43) is the compatibility condition of the Eq. (42). U and V are
called as Laz pairs.
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Integrable Equations

Example

(Sine-Gordon Equation) If we consider the following Lax pairs U and V/

U= %(—uwal + Ao3), V = %(sin(u)ag — cos(u)oy), (44)

then the function u(z,t) satisfy the sine-Gordon equation
Uz = sin(u), (45)

where X is the spectral parameter and o denote the standard Pauli
sigma matrices

e (13) e (07) e (A0)
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Example
(mKdV Equation) The Lax pairs for mKdV equation is given as
i

g 1
U = 5005 —uon), V= (N = 5020y + 0101 + vaoz),  (47)

where v] = Uz + u3/2 — \2u, vy = —Au,. Here the function wu(x,t)
satisfy the mKdV equation

3
Ut = Upgy + §u2ux. (48)

v
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Theory of Soliton Surfaces

Soliton surface technique is a method to construct 2-surfaces in R? and
in Mg.

In the literature, there are certain surfaces corresponding to certain
integrable equations such as SG, sinh-Gordon, KdV, mKdV, and NLS
equations [Bobenko, 1994], [Bobenko, 1990],

[Melko and Sterling, 1994],

[Sym, 1982],[Fokas and Gelfand, 1996],[Ceyhan et. al., 2000],[Fokas et. al.
,|Giirses and Tek, 2014].

Symmetries of the integrable equations for given Lax pairs play an
essential role in this method which was first started by Sym

[Sym, 1982]-[Sym, 1985] and then it was generalized by Fokas and
Gel’fand [Fokas and Gelfand, 1996], Fokas at al. [Fokas et. al., 2000],
[Ceyhan et. al., 2000] and Ciesliniski [Cieslinski, 1997].

Now by considering surfaces in a Lie group and in the corresponding
Lie algebra, we give the general theory.

Metin Gurses (Bilkent Univ.) Integrable Curves and Surfaces June 5-10, 2015 28 / 151



Theory of Soliton Surfaces

Let G be a Lie group and g be the corresponding Lie algebra.

We give the theory for dim g = 3, it is possible to generalize it for finite
dimension n.

Assume that there exists an inner product (,) on g such that for g,
g2 € g as (g1, 92).

Let {e1,e2,e3} be the orthonormal basis in g such that
(ei,ej) = di5 (4,7 = 1,2,3), where §;; is the Kronecker delta.
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Theory of Soliton Surfaces

Theorem

Let U, V, A, and B be g valued differentiable functions of x, t, and A
for every (x,t) € O C R? and A\ € R. Assume that U, V, A, and B

satisfy the following equations
U -V, +[U,V]=0,

and
A — B, +[AV]+[U,B] =0.

Then the following equations
e, =UP, &=V,

and
F,=d1'A®, F,=0 !B,

define surfaces ® € G and F € g, respectively.

(49)

(50)
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Theory of Soliton Surfaces

Then we have the following theorem

Theorem

The first and second fundamental forms are
(d51)2 = gijdzi da? (dsH)2 = hijdzvi da?
where i,j =1,2, 2! =z, 22 =1t, gij and h;j are given as

gu1 = (A, A), g12 = g21 = (A, B), go2 = (B, B),

hi1 = (Az + [A,U],C), hia = ho1 = (A: + [4,V],C),
hea = (Bt + [B, V], C),

C = [A, B]/|[4, Bl [IAll = V{4, 4)].

The Gaussian and mean curvatures of the surface are

1
K =det(¢g")h, H= §t7“ace(g_1h).
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Theory of Soliton Surfaces

The matrices A and B relates the differential equations and surfaces by
equations in Eq. (52).

In general, solving Eq. (50) to find A and B and expressing the
position vector are difficult.

In order to overcome this difficulty we define an operator operator 9.

Definition

Let 6 be an operator acts on differentiable functions and satisfy the
following conditions

50y = 040, 50; = 0,0, (58)
6(fg)=gd(f)+ fig) (59)
é(af +bg) = ad(f) + bd(g) (60)

Here f and g are differentiable functions, a and b are constant. We
call such operators as deformation operators.

Metin Giirses (Bilkent Univ.) Integrable Curves and Surfaces June 5-10, 2015 32 / 151



Theory of Soliton Surfaces

The following proposition gives a solution for finding A and B matrices.

Proposition

Let ®, U, and V' are the matrices satisfying equations in Eqs. (49) and
(51), A and B defines as A = 0U and B = §V, respectively. Equation
for A and B in Eq. (50) is automatically satisfied and we have the
following equations

(@ 16®), = 1 AD, (61)

(@ 16®); = o~ BD. (62)

June 5-10, 2015 33 / 151
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Theory of Soliton Surfaces

In the following proposition, we give the relation that directly connects
deformation operators and surfaces.

Proposition

Let F be g valued position vector. The position vector F' and its partial
derivatives are given as

F=9%"150, (63)
F,=® 1A, (64)
F, = & 'Bo, (65)

Now finding deformation operators in soliton theory and hence
determining the matrices A and B becomes an important step.

The following proposition answers the question how to find A and B
without solving the equation in constructing the surfaces.
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Theory of Soliton Surfaces

Proposition

The followings are the deformation operators of soliton equations:

a) Nonlinear integrable equations are invariant under spectral
parameter deformation. In this case, the deformation operator is
0 = 0/OX. Hence A and B matrices are given as

ou ov
A= % B = % (66)

and position vector of the surface and its derivatives take the
following forms

0V
oN

This type of relation first studied by Sym [Sym, 1982]-[Sym, 1985].

F=o12 p %

N =2

(67)
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Theory of Soliton Surfaces

Proposition
b) Under Gauge transformation ®, U, and V' change as

=83, U =SUS '+ 8,8,V =SVS~! + 5,57 (68)

These Gauge transformations define a new d operator. If we let
S =1+ €M such that € = 0, then we get 6® = M®. M is any
traceless 2 x 2 matrixz. The matrices A and B are obtained by

A=4U = 88M+[MU] B—éV—aaj\er[MU] (69)

and the position vector of the surface is given as
F=3"1Mo. (70)

For more information can be found in [Fokas and Gelfand, 1996] -
[Ceyhan et. al., 2000], [Cieslinski, 1997].
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Theory of Soliton Surfaces

Proposition

c) Symmetries of the nonlinear integrable equations are another type

of deformation. These are two types. First one is classical Lie
symmetries which preserve the differential equation. The second is
the generalized symmetries of nonlinear integrable equations. The
latter transformation maps solutions to solutions. Deformation
operator for these symmetries is taken as Freche’t derivative (see
[Fokas and Gelfand, 1996] and [Ceyhan et. al., 2000]). In other
words, for a differentiable function F, §F(x) is defines as

. df (x + et)
O0F (z) = ?_1)% — (71)
For this deformation, the matrices A and B, and the position
vector of the surface take the following form
A=0U,B=¢V,F =d 16d. (72)

v
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Theory of Soliton Surfaces

d) The deformation of parameters for solution of integrable equation

18 the fourth deformation. This is introduced by
[Giirses and Tek, 2015]. In this case, A, B, and F are obtained as

oU
oV
0P
_ 5192 . _
F=0loe, i=12.. N (75)

Here & are parameters of solution u(z,t,&;) of integrable nonlinear
equations, where t = 1,2,..., N. Here N is the number of
parameters.
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Theory of Soliton Sur

Now we give two proposition about the surface of sphere.

For any differential equation, if the determinant of the matriz M, given
in Proposition 7.6 b), is constant, i.e. det M = R? = constant, the
corresponding surface is a sphere with radius R.

Some of the differential equations have transitional symmetry in either
x direction or t direction (or in both direction).

In this case the deformation operator can be considered as § = 0, or

5:8t.

Here we consider the transition in both directions such as
6 = a0, + boy, where a and b are arbitrary constants.
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Theory of Soliton Surfaces

Proposition

If 6 = a0y + b0y is the symmetry operator such that a and b are free
parameters and det(aU + bV') = constant = R?, the corresponding
surface is a surface of sphere with radius R.

If 0 = ady + bOy, using Eq. (72) in Proposition 7.6 and Eq. (51), we
obtain F' as
F=3aU +bV)®, (76)

which yields
det F = det(all +bV) = R>. (77)
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ational Principle

In 1833, Poisson considered the free energy of a solid shell as

_ 2
f_ﬂéﬂ dA. (78)

Here S is a smooth closed surface, A and H denote the surface area
and mean curvature of the surface S.
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Surfaces from a Variational Principle

Proposition
Let S be a smooth closed surface, and K and H be Gaussian and mean

curvatures of the surface, respectively. Variation of functional F in Eq.
(78) gives the following Euler-Lagrange equation [Willmore, 1982]

V2H 4+ 2H(H? — K) = 0. (79)

Here V? is the Laplace-Beltrami operator defined as

2_ 1 0 ( i 9

where g = det (gi;), g% is the inverse components of the first
fundamental form, and i,j = 1,2, where x' = x, 2% = t. Solutions of
Eq. (79) are called Willmore surfaces.
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Surfaces from a Variational Principle

Helfrich [Helfrich, 1973] obtained the curvature energy per unit area of
the bilayer as
& = (ke/2) (2H + co)® + kK, (81)

where k. and k are elastic constants, and ¢ is spontaneous curvature
of the lipid bilayer. Using the Helfrich curvature energy Eq. (81), the
free energy functional of the lipid vesicle is written as

fzﬂs(&ww)dflw///vw (82)

Ou-Yang and Helfrich [Ou-Yang and Helfrich, 1987] obtained shape
equation of the bilayer by taking the first variation of free energy F in
Eq. (82). We give this result in the following proposition.
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Surfaces from a Variational Principle

Proposition
Let S be a smooth surface of lipid vesicle, V' be the volume enclosed by
the surface, p and w be osmotic pressure and surface tension of the
vesicle, respectively. First order variation of the functional in Eq. (82)
yields the following Fuler-Lagrange equation

[Ou-Yang and Helfrich, 1987]

p—2wH + k. V2(2H) + ko(2H + co)(2H? — coH —2K) = 0.  (83)

v

Later Ou-Yang et al. considered the more general energy functional

f:ﬁig(H’K)dAw//vdV (84)

[Ou-Yang et. al., 1999], [Tu and Ou-Yang, 2004]-[Tu, 2001]. Here £ is
function of mean and Gaussian curvature H and K, respectively, p is a
constant, and V' is the volume enclosed within the surface S.
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Surfaces from a Variational Principle

Proposition

Let S be a closed smooth surface. The first variation of F given in Eq.
(84) results a highly nonlinear Euler-Lagrange equation as

[Ou-Yang et. al., 1999],

[Tu and Ou-Yang, 2004-[Tu and Ou-Yang, 2005]

OE _ OE
2 2 el . o —
(V2 +4H? —2K) 2 + 2V -V + 2K H) o —4HE +2p =0, (85)

where V2 is the Laplace-Beltrami operator given in Eq. (80) and V -V

s defined as
- 1 0 . 0
V= (GERI 2 ).
VY=o (\/5 h (%J) (86)

For open surfaces, we let p = 0.
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Surfaces from a Variational Principle

Some of the surfaces can be obtained from a variational principle for a
suitable choice of £ are given as:

(a)
(b)
(©)

Minimal surfaces: £ =1, p=0;
Surfaces with constant mean curvature: £ = 1;

Linear Weingarten surfaces: £ = aH + b, where a and b are some
constants, aK + 2bH — p = 0;

Willmore surfaces: £ = H? [Willmore, 1982], [Willmore, 2000];

Surfaces that solve the shape equation of lipid membrane:
£ = (H — ¢)?, where c is a constant [Ou-Yang et. al., 1999],
[Tu and Ou-Yang, 2004]-[Mladenov, 2002];

Shape equation of closed lipid bilayer: & = (k./2) (2H + )’ + kK,
where k. and k are elastic constants, and cg is the spontaneous
curvature of the lipid bilayer [Ou-Yang and Helfrich, 1987].
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nal Principle

Surfaces that solve the following equation

V?H 4 aH? + bH K = 0, (87)

are called Willmore-like surfaces, where a and b are arbitrary constants.

Remark

When a = 2 and b = —2, the surface becomes Willmore surface which
arise from a variational problem.

N,

Metin G



Soliton Surfaces in R”

In this section, we obtain surfaces in R3 using soliton surface technique
and variational principle.

Consider the immersion F of U € R? into R3.

Let’s denote the tangent space by T(, ;S of the surface S. A basis for
the T(; 1S can be defined as {Fy, Fy, N}.

Here S is a surface parameterized by F'(x,t).

Let’s denote the first and second fundamental forms, respectively, as
ds? = gijda'dr?, and ds?; = hijda'dx’ (88)
where i,j = 1,2, and 2! =z, 22 = t.

We use Lie group and its Lie algebra to develop surfaces using
integrable equations.
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Soliton Surfaces in R3

To study the immersions in R?, we use SU(2) as a Lie group and su(2)
as its corresponding Lie algebra.

Consider e, = —ioy, k = 1,2,3 as a basis for the Lie algebra su(2).
Here o, denotes the standard Pauli sigma matrices

() e () e (4)

Consider the following inner product defined on Lie algebra su(2)
1
(X,Y) = ~5 trace(XY), (90)

where X, Yesu(2) and [.,.] denotes the usual commutator.

We follow Fokas and Gelfand’s approach introduced in Section 7 to
construct surfaces using integrable equations such as mKdV, SG, and
NLS equations.
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Soliton Surfaces in R3

e We start with su(2) valued Lax pairs U and V of these integrable
equations.

@ We use the deformations that we introduced in Section 7 to find
the matrices A = 6U and B = §V that satisfy Eq. (50).

o Using the matrices U, V, A and B we find the first and second
fundamental forms g and A of the surfaces corresponding to
mKdV, SG, and NLS equations.

e We also find Gaussian (K) and mean (H) curvatures of these
surfaces using first and second fundamental forms.

1
K =det(g"')h, H = itrace(gflh)

e Finding K and H allows us to classify some of these surfaces
(Weingarten, Willmore , etc.,)
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Soliton Surfaces in R

o Furthermore, in order to find the position vector F = ®~1§ ®
explicitly, we solve the Lax equations of the integrable equation
using the Lax pairs U and V, and a solution (in particular soliton
solutions) of the integrable equation that we consider.

o Considering some special values of the parameters in the position
vectors, we plot some of these surfaces that we obtained using
integrable equations. We also obtain some Willmore-like surfaces
and surfaces that satisfy generalized shape equation.
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Soliton Surfaces in R3 mKdV Surfaces from Spectral Par. Defor.

In this section we use spectral parameter deformation of the Lax pairs
of mKdV equation. In this section we closely follow the references
[Ceyhan et. al., 2000] and [Tek, 2007].

Let u satisfy the mKdV equation

3
Up = Uggy + §u2ux. (91)

When we use the travelling wave ansatz u; — au, = 0 in mKdV
equation [Eq. (91)], we obtain

3
Ugy = QU — % (92)
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Soliton Surfaces in R3 mKdV Surfaces from Spectral Par. Defor.

The Lax pairs for the mKdV equation in Eq. (92) are given as
1 A —u
U—2<_u _A), (93)

1
i [ su® = (a4 ar+ 2% (a0 + Nu — iuy
vV = —| 2 (94)

1
(o + N + iy —§u2 + (a+ar+2?)

\]

and A is a spectral parameter.

In the following proposition, using the Lax pairs of mKdV equation
and their spectral parameter deformation we obtain the surfaces for
mKdV equation.
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Soliton Surfaces in R3 mKdV Surfaces from Spectral Par. Defor.

Proposition

Let u be a travelling wave solution of the mKdV equation given in Eq.
(92) and su(2) valued Lax pairs U and V are defined by Eqs. (93) and
(94), respectively. The matrices A and B are defined as spectral
parameter deformations of the Lax pairs U and V', respectively, as

_oU i 0
oV i —(ap+2pN) pmu
B = noy= 2( pu ap+2pr )’ (96)

where | is a constant and X\ is the spectral parameter.
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Soliton Surfaces in R3 mKdV Surfaces from Spectral Par. Defor.

Proposition
First and second fundamental forms of the surface S are given as

) 2
(ds1)? = gj da? da* = HZ <[dm + (o + 2 0)di]? + u? dt2>, (97)

(ds11)? = by da? da* = 2 (do o+ o+ X)) (98)

—i—%(u2 — 2aq)dt?,

and the other two important geometric invariants of the surface,
namely Gaussian and mean curvatures are given as

2 2 1 2 2
where z' =z, 2 = t.
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Soliton Surfaces in R3 mKdV Surfaces from Spectral Par. Defor.

The following proposition gives surfaces belongs to Weingarten surfaces
[Ceyhan et. al., 2000], [Tek, 2007].

Proposition

Let u be a travelling wave solution of the mKdV equation given in Eq.
(92) and S be the surface obtained in Proposition 9.1. Then the surface

S is a Weingarten surface that has the following algebraic relation
between K and H

SuPH? (4o + p*K) = (8o + 402 + 31 K)2. (100)

When o = A2 in Proposition 9.1, the surface reduces to a quadratic
Weingarten surface which has the following relation

16p°H? = 18(u? K + 4)?). (101)

v
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Spectral Par. Defor.

Integrating the equation given in Eq. (92) and taking the integration

constant zero, we obtain the following equation

4
2_ 2_u
s =au — —

The following proposition gives another class of mKdV surfaces,
namely Willmore-like surfaces [Tek, 2007].
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Soliton Surfaces in R3 mKdV Surfaces from Spectral Par. Defor.

Proposition

Let u satisfy Eq. (102) and S be the surface obtained using spectral
parameter deformation in Proposition 9.1. Then the surface S is called
a Willmore-like surface. This means that the Gaussian and mean

curvatures of the surface S satisfy the following equation
V2H + aH? + bH K = 0,

where
4
a= 5 b=1, a=M\

and X\ is an arbitrary constant.

(103)

(104)
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Soliton Surfaces in R3 mKdV Surfaces from Spectral Par. Defor.

In the following proposition we investigate mKdV surfaces which arise
from a variational principle.

Proposition

Let u satisfy Eq. (102) and S be the surface obtained using spectral
parameter deformation in Proposition 9.1. Then there are mKdV
surfaces satisfying the generalized shape equation

(V24 4H? - 2K)§—2 +2(V-V+ 2KH)§—5 —4HE +2p =0, (105)

where Lagrange functions are polynomials of Gaussian and mean
curvatures of the surface S.

Now we give some examples of polynomial Lagrange functions of H
and K that solve the equation given in [Eq. (105)] and provide the
constraints [Tek, 2007].
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Soliton Surfaces in R3 mKdV Surfaces from Spectral Par. Defor.

i) for N =3:
5:a1H3+a2H2—|—a3H+a4+a5K+a6KH,
4
°oa=X\, a =~ p”4, a2=a3=a4f0, a6=%,
where A # 0, and u, p, and as are arbitrary constants;
ii) for N =4:
&=
a1H4+a2H3+a3H2+a4H+a5+a6K+a7KH+a8K2+a9KH2,
o a=)2 ay=— o as = — s (27a; —8ag), as =0
) 2 72)\47 3 15 IE 2 1 — 8)» 4 )
4 pu' 1
Q@ a5 = 5 4(81a1+16a8) a7zw, ag:—m(189a1+64a8)

where )\ #0, u # 0, and p, a1, ag, and ag are arbitrary constants;
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mKdV Surfaces from Spectral Par. Defor.

Example

iii) for N =5
E =a1 H>4ay H*+a3 H>+ay H*4+-a5s H+ag+a7 K +ag K H+ag K2
+a10KH2+a11K2H+a12KH3,
iv) for N =6:
E=u H6+a2 H5—|—a3 H4—|-CL4 H3+a5 H2+a6 H+a7+ags K+a9g K H
+ao K2 +an K H> +a1s K2 H+a13 K H3+a14 K3 +a15 K? H?
+a16KH47

For general NV > 3, from the above examples, the polynomial function
& takes the following form

N
5 = Z Hn Z aanl7
n=0 =0

where |z] denotes the greatest integer less than or equal to z, and a,;
are constants.
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Soliton Surfaces in R Position Vector of mKdV Surfaces

In the previous section, we obtained local invariants of the mKdV
surfaces.

We also classified some of these surfaces such as Weingarten surfaces,
Willmore-like surfaces and surfaces that solves generalized shape
equation.

It is also important to determine the position vector of the mKdV
surfaces.

We start with one soliton solution of mKdV equation given in Eq. (92).

Consider the following one soliton solution
u = kq sech§, (106)

where o = k}/4 in Eq. (92) and £ = ky (kit+4z) /8.
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Surfaces

Using this one soliton solution and corresponding matrix Lax pairs U
and V given by Egs. (93) and (94) of mKdV equation, we solve the
Lax equations given in Eq. (51).

The solution of Lax equation is a 2 X 2 matrix ®

D1 Do >
o = . 107
< Dy Poo (107)
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Soliton Surfaces in R3 Position Vector of mKdV Surfaces

We find these components as

By = _kilAl oi(k3+422)t/8 (108)

“(2X + ik tanh§) (tanh & + 1)i’\/2k1 (tanh & — 1)—i>\/2k1
+iky By e ()8 (tanh & — 1)™?%1 (tanh & + 1) 721 gech €,

Byy = _kilAz oi(k3+4X2)1/8 (109)

: (2 Atk tanh{) (tanhf + 1)i)‘/2k1 (tanhf _ 1)—2’)\/2k;1
+iky Bye ()8 (tanh & — 1)™2%1 (tanh € 4+ 1)1 sech €,
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Soliton Surfaces in R3 Position Vector of mKdV Surfaces

Dy =i Ay ei(KE+42%)1/8 (tanh & + l)i/\/%1 (tanh & — 1)_“‘/%1 sech ¢
(110)

+ Bre (NS (k) tanh € 4 2i)) (tanh € — 1)/ (tanh ¢ + 1) 73

By = i Ay e (FH)U8 (tanti ¢ 1+ 1)1 (tanh ¢ — 1)1 gech ¢
(111)

+ By e (NS (k) tanh € 4 2i)) (tanh € — 1) (tanh ¢ + 1) 73
The determinant of the matrix ® is given as

det(®) = [(kF + 4A*)/k1] (A1 B2 — A3 By) # 0. (112)
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Soliton Surfaces in R Position Vector of mKdV Surfaces

In order to find the immersion function F' explicitly, we first find F

and F} given in the following form
F,=0"1A®, F, = & 'Bo.

We solve the resultant equation by letting A; = Ao,
B = (Al/kl)e”)‘/kl, By = —B; and obtain the function F' as

F =e1y; + eay2 + e3ys

where 31, y2, and y3 are given as
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Surfaces in R” Position Vector of mKdV Surfaces

1
- w (Q 2 1 1) 4 32k ) , 115
N eEr 1 (e +1) + 32k (115)
yo = —4 W7 cos Qg sech &, (116)
y3 = 4 Wy sin Qg sech &. (117)

Here e1, ey, eg form a basis for su(2), 4, Qy, and Wy are given as

p ki
Wi=—g e 118
YTz ANy (118)
Q= (LN + K] +4x) (k] +4)7), (119)

1
92:t<A2+4k%[1+A]> +z A, (120)

K3 4z
=14 ). 121
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Surfaces

We obtained the position vector Y = (y1,y2,y3) of the mKdV surfaces

corresponds to the spectral parameter deformation in Eqs. (115) -
(117).

We plot some of these mKdV surfaces for some special values of the
constants u, A, and kj.
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Soliton Surf n Po: on Vector of mKdV Surfa

Example: Taking p = 5, k; = 1.5, and changing X as a) A =1,
b)A=1.3, ¢c)A=1.6, d) A =2,in Egs. (115) - (117), we get
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Soliton Surf:

Example: Taking = 2, A =0, and k; = 1.25, in Egs. (115) - (117),
we get the surface given in Figure 2.
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Soliton Surfaces in R3 Position Vector of mKdV Surfaces

Example: Taking p = 3, k1 = —2, and changing A as a) A = 0.08,
b)A=0.2, ¢c)A=0.5, d) A =0.8, in Egs. (115) - (117), we get

d)
Figure: (a)-(d) (z,t) € [-8,8] x [-8, §]
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Soliton Surfaces in R3 mKdV Surfaces from the Spectral-Gauge Deformations

When we consider a combination of the spectral parameter and gauge
deformations of Lax pairs U and V', the matrices A and B are obtained
as

oUu ov
A:Maﬁ-y[O’Q,U], B:ME—FV[O'Q,U] (122)

Here we just give the Gaussian and mean curvatures of the surfaces of
the surface as

K 2u (u? —2a) ’ (123)
1/<2 vuu? —2a] — 3pu2 — 2u(\2 — a)) + plu
- p(Bu? +2(\ —a)) —4duv(u? —2a) (124)

2y<2yu[u2—2a] —3uu2—2,u()\2—a)) +2u2u

mKdV surfaces obtained from spectral-gauge deformation do not
belong to Willmore-like surfaces and surfaces that solve the generalized
shape equation.
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Soliton Surfaces in R3 mKdV Surfaces from the Spectral-Gauge Deformations

The components of the position vector Y = (y1, 32, y3) for mKdV
surfaces correspond to spectral-gauge deformation are given as

2 _ 1 1
= Wy ——seché — W3 Q3 — Wy—r—— 12
n Wo @) sech & — W3 Q3 W462£+1a (125)
1 e +1
Yo = [5 Wysech & + Wi ((egg_i_l))Q — W sech” 5} cos (2 (126)
26 1
+Wy (67 sin (1o,
(e% 4+ 1)
1 e* +1
Yys = [5 Wysech& + Wi ((8254‘1))2 — W sech? f} sin{y (127)
(e2E -1 QO
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mKdV Surfaces from the Spectral-Gauge Deformatio:

where
2k% v 7
Wy= -1 Wy== 128
TR Ty (128)
4uk? v (k? —4)%)
Wy= -t Wy=—t 2 129
TR a T U R2 g (129)
v(42% 4 3k%) 4Nkiv
We =222 TNy 2ARY 130
OT k244X T T T 2 (130)
Qo =1t (N + kT [L+ A]/4) + 2, (131)
3
4
Oy = (L[BA+ K] +4x), 5_—( kf) (132)
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Soliton Surf: 5 1 3 Plotting mKdV Surfaces from Spectral-Gauge Def.

Example: Taking 4 = —6, v = 1.5, and k; = 1.5,, and changing X as
a)A=0, b) A =0.2, in Egs. (125) - (127), we get the surface given in
Figure 4.

b)
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Soliton Surf: 5 1 3 Plotting mKdV Surfaces from Spectral-Gauge Def.

Example: Taking p = 1.5, v = 0.1, k& = 1.7, and A = 0.1, in Egs.
(125) - (127), we get the surface given in Figure 5.
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Soliton Surfaces

Example: Taking y =3, v = —1, and k; = 1,, and changing \ as
a)A =1, b)A = —4, in Egs. (125) - (127), we get the surface given in
Figure 6.

Figure: (a)-(b) (z,t) € [-8,8] x [-8, §]
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Soliton Surf: 5 1 3 Plotting mKdV Surfaces from Spectral-Gauge Def.

Example: Taking y = -3, v = —1, k; = 1, and A = —0.2, in Egs.
(125) - (127), we get the surface given in Figure 7.
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Soliton Surfaces in R3 SG Surfaces

In this section we obtain surfaces corresponding the sine-Gordon (SG)
[Ceyhan et. al., 2000], [Tek, 2007].
Let u(z,t) satisfy the SG equation

Uyt = SINU. (133)

The Lax pairs U and V of the KdV equation in Eq. (133) are given as

1 A Uy
] -
1 —1 cosu Sinu
[ 2)\< —sinuw i cosu >’ (135)

were )\ is a spectral constant.
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Soliton Surfaces in R3 SG Surfaces

In the following proposition, we obtain SG surfaces using spectral
parameter deformation of U and V.

Proposition

Let u satisfy the SG equation given in Eq. (133) and su(2) valued Laz
pairs U and V are defined by Eqs. (134) and (135), respectively. The
matrices A and B defined as spectral parameter deformations of the
Lax pairs U and V', respectively

ou ip (1 0
A—”a—7(o _1>7 ()
191% u [ icosu —sinu

n )

sinu —% cosu

B=uox =

where | is a constant and X\ is a spectral parameter.
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Soliton Surfaces in R3 SG Surfaces

Proposition

Then the first and second fundamental forms of the surface S are given

as
; 2
(d5])2 = Gjk dz? dq;k (dl’ + ﬁ cos u dx dt + F dt?
(d511)2 = b da? dzF = —% sinu dx dt,

and the Gaussian and mean curvatures are given as

4 \? 2\
— H = — cotu,
K K

K=—

(138)

(139)
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Soliton Surfaces in R3 SG Surfaces

In the following proposition, we use spectral and Gauge deformation to
obtain SG surfaces.

Proposition

Let u satisfy the SG equation given in Eq. (133) and su(2) valued Lax

pairs U and V are defined by Eqs. (134) and (135), respectively. The
matrices A and B defined as

_ oUu iv 1 i VA
oV iv
B=ngx +3lnVi

1 i(pcosu — Avsinu) —psinu — A\vcosu
=0 . . . (141)
22 usinu + Avcosu  —i(pcosu — Avsinu)

where p is a constant and X is a spectral parameter.
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Soliton Surfaces in R3 SG Surfaces

Then the first and second fundamental forms of the surface S are given
as
(dsr)? = gjx d2? dz*, and (dsir)? = hj da? da® (142)
where
1
g = 21 \207), (143)
— g1 = —= (2 = 222 — 2uv\si 144
J12 =921 = 73 (1 vi)cosu — 2uvAsinu|,  (144)
Ly 2.9 Lo
922 = 4_>\2(,U + Av ), hi1 = 5)\ v, (145)
1 . v
his = ho1 = —ﬁ(,uSIH’LL -+ )\I/COS’LL), hoo = 2—)\2 (146)

v
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Surfaces in R” SG Surfaces

Proposition

The Gaussian and mean curvatures are given as

Licos?u+ Lysinucosu — Ly

- Lscos2u+ Lysinucosu + Ly’

I Lgcos?u+ Lrsinucosu + Lg

" Lscos?u+ Lysinucosu + L5’

where

Ly = 4X2(\2 02 — 1), Ly = 8 w3,

Ly = gt + A202(02 02 — 642),

Ly = 4p v\ % — 1?),

Ly = —pt = N2 02(\2 0% — 242),

Le = 20 N> (N2 1% — 3 42),

L7y = 2u A3MN2% — %), Lg = 2v V2 (u® — A2 1/2).
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Soliton Surfaces in R3 SG Surfaces

The following proposition gives SG surfaces belongs to Weingarten
surfaces [Ceyhan et. al., 2000].

Proposition

Let u satisfy the SG equation given in Eq. (133) and S be the surface
obtained using spectral parameter deformation. Then the surface S is a
Weingarten surface that has the following algebraic relation between
Gaussian and mean curvatures of the surface

(12 + N2 K — w2 H +4X2 = 0. (155)

v
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Soliton Surfaces in R3 SG Surfaces

Proposition

Let u satisfy Eq. (133). su(2) valued Lax pairs U and V' of the SG
equation are given by Eqs. (134) and (135), respectively. su(2) valued
matrices A and B are defined as

i i
A=Up= —5 %01, B=Vp= o7 p(cosuoy + sinuog)  (156)
where X\ is constant and o1,092,03 are the Pauli sigma matrices. Here
primes denote Fréchet differentiation and ¢ is a symmetry of (133),
i.e. © 1S a solution of

Ozt =  COSU (157)

v
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Soliton Surfaces in R3 SG Surfaces

Proposition
Then the surface S has the following first and second fundamental
forms

. 1 1
2 _ ko 2 52 2 7,2
(dsr)” = gjrda’? da™ = i (gox dz”® + 2z ¥ dt ), (158)
; 1 1
(ds1)* = gjrda’ da* = p ()\ @z sinudz? + 3 P ut dt2>, (159)

and the Gaussian and mean curvatures are given as

P AN2uy sinu7 oo Apzur + @sinu)

(160)
PPz PP

v
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Soliton Surfaces in R3 SG Surfaces

Indeed, Eq. (157) has infinitely many explicit solutions in terms of u
and its derivatives. The following corollary gives the surfaces
corresponding to ¢ = u, which is special case of Proposition 9.12.

Corollary

3
<
S

Let ¢ = uy in the previous Proposition, then the surface turns out to be
a sphere with first and second fundamental forms

(dsp)? = i(sm u da® + ﬁ u dt2> (161)

1
(dSH)2 = 5()\ sin® u dz? + " ut2 dt2), (162)

and the corresponding Gaussian and mean curvatures are

K=4X, H=2\ (163)

Metin Gurses (Bilkent Univ.) Integrable Curves and Surfaces June 5-10, 2015 88 / 151



Soliton Surfaces in R3 SG Surfaces

For the following solutions (Generalized symmetries) of the symmetry

equation @, = @ cosu

3
Ug
go:ux,cp:u;gqu?,

=u +uj’
@ = ust 27

5 2 5 2 3 5
¢:u5x+§uxu3x+§uxu2x+§%

We obtain different SG surfaces with the Gaussian and mean
curvatures of the surfaces which are constructed previously.
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Soliton Surfaces in R3 NLS Surfaces

In this section we obtain surfaces in R? corresponding nonlinear
Schrodinger (NLS) equation [Ceyhan et. al., 2000], [Tek, 2015].

Let complex function u(z,t) = r(x,t) + is(z,t) satisfy the NLS
equation

Tt = Spz + 23(r2 + 32),

St = —Tyy — 2r(r2 + 52),
where r, s are real functions.
By changing the variables r and s as
r=g¢qcos¢, S=¢gsing,
and NLS given in Egs. (167) and (167) take the following form
461 = —Guw — 24° + 403,

Gt = QPzz + 2¢ Pz
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Soliton Surfaces in R3 NLS Surfaces

The Lax pairs U and V of these equations are given as

i -2\ 2q(sing — i cos @)
U= 2 < 2q(sing + i cos ) 2\ » (172)
=2 (2 A2 — qz) z1 + 129
V__2< n—izm 2(2X2—¢%) ) (173)
where
21 =2(qz +2Aq)cosd — 2q ¢y sin ¢, (174)
22 =2(gz +2XAq)sing — 2q ¢, cos ¢, (175)

and )\ is a constant.
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Soliton Surfaces in R3 NLS Surfaces

In the following proposition we obtain the NLS surfaces using spectral
deformation.

Proposition

Let q and ¢ satisfy NLS equation given in Eqs. (170) and (171). The
Lax pairs U and V' of the NLS equation are given by Eqs. (172) and
(173), respectively. su(2) valued matrices A and B are defined as

U i =2 0

A‘“m‘z( 0 2u>’ (176)
oV —8\i 4pq(cos d — i sin @)

B= Fax = 72 ( 441.q(cos ¢ + i sin @) 8\ (177)

where X\ is spectral parameter and i is a constant.
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Soliton Surfaces in R3 NLS Surfaces

Proposition

Then the surface S has the following first and second fundamental
forms (j,k=1,2)

(ds1)? = gy da? dz® = 1 ([d:v AN+ A dt2>, (178)
2 ok 2
(dsrr)” = hjpda’ da™ = =2 pq (dm —[2A- qbz]dt) + 2 11 qog (E79)
The Gaussian and mean curvatures of S are obtained as

K:_Q;x, HZQxx_Q(¢z+22)\)2_4q3,
K q dpq

(180)

1

where z' =z, 22 = t.
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Soliton Surfaces in R3 NLS Surfaces

Let ¢ = at and g = q(z) satisfies the following equation
Qex = _2q3 —aqg.

When we multiply Eq. (181) by ¢, and integrate the resultant
equation, q(z) satisfy the following equation

¢ =-q¢"—ad.

Metin Giirses (Bilkent Univ.) Integrable Curves and Surfaces June 5-10, 2015

(181)

(182)

94 / 151



Soliton Surfaces in R3 NLS Surfaces

The following proposition gives a class of NLS surfaces which are

Willmore-like.

Proposition

Let ¢ = at and q = q(x) satisfy the equation given in Eq. (182) and S
be the surface obtained in Proposition 9.15. Then the surface S is
called a Willmore-like surface. This means that K and H satisfy the

following equation
V2H +aH? +bH K =0,

where a, b, and o have the following form

4
a:§, b=0, a=-2)2%

and X\ is an arbitrary constant.

(183)

(184)
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Soliton Surfaces in R3 NLS Surfaces

The following proposition contains the Weingarten surfaces.

Proposition

Let S be the surface obtained in Proposition 9.15, 0 = at and q¢ = q(x)
satisfy Eq. (182). Then the surface S is a Weingarten surface that has
the following algebraic relation between K and H

8uPH? (Kp® — ) = (3K > —2a 4+ 42?)%, (185)

where a, @, and X are constants. This surface S is a Weingarten
surface.

When a = —4)2, the surface S reduces to a quadratic Weingarten
surface
K—§H2+4/\—2:0 (186)
9 2 i

v
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Soliton Surfaces in R3 NLS Surfaces

Proposition
Let 0 = at and q = q(x) satisfy the equation given in Eq. (182) and S
be the surface in Proposition 9.15. Then there are NLS surfaces
satisfying the generalized shape equation

o€ _ o€
2 2 Rl . e _
(V2 +4H? —2K) 5 +2(V -V + 2K H) 7o — 4HE +2p =10, (187)

where the Lagrange function &€ is a polynomial of Gaussian and mean
curvatures of the surface S.

We now give some examples of £ for the NLS surfaces that solve the
Euler-Lagrange equation given in Eq. (105) and provide the
constraints [Tek, 2015].
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NLS Surfaces

Let deg(€) = N, then

i) for N =3:
E=a1H*+asH*>+a3H+ay+as K +ag K H,
4 2 4
. 2 _ bp o _ bp _pbp
oa__Q)‘aal__Wa a2_a4_(_),a3_16)\2’ aﬁ_m’
where A # 0, and u, p, and as are arbitrary constants;
ii) for N =4:
& =a1H*4asH3+-asH?*+aysH+as+agK+a7 K H+agK?+agK H?,
8 put
=-2), ag=——(8 15 =—
*« » 1= —7g5 (Bas+15a9), az = —7555,
2\ p
° a3 = 77/3 (32ag +25a9), aq = 163
24 put
@ a5 = — 21/1/4 (38a8+45a9) a7 = W,

where X\ # 0, u # 0, and p, ag, ag, and ag are arbitrary constants;
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Soliton Surfaces in R3 NLS Surfaces

IS
S

Example
iii) for N =5
E=a H5—|—a2 H4+a3 H3+CL4 H2+a5 H+ag+a7 K+ags K H+ag K?
+CL10KH2+G11K2H+CL12KH3,
For general N > 3, from the above examples, the polynomial function
& takes the form

||
£ = ZH” Z am K,

where |x| denotes the greatest integer less than or equal to z and ay,
are constants.
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Soliton Surfaces in R3 Position Vector of NLS Surfaces

Let ¢ = 2nsech{ and 6(t) = p be solution of NLS equation, where
£ =2nx — Kk and p = —4n’t.

In order to find the position vector first we solve the Lax equation
given in Eq. (51).

The solution of Lax equation is a 2 X 2 matrix ®
Q11 P9 )
D= , 188
( Dy P9 (188)

where @11, @12, P21, P19 are given as

= T (CleQi(/\QHnQ}t(Utanhﬁ +i\)(tanh & + 1)~
n(sin p 4 i cos p)
x (tanh & — 1)i/\/4" — D1672"’\2tn2sech§(tanh§ + 1)”\/477
x (tanh & — 1)—2'/\/477)’ (156
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Surfaces in R Position Vector of NLS Surfaces

1
n(sin p 4 i cos p)
x (tanh & — 1)™41 — Dye™2 Nt 2sech € (tanh € + 1)1/47

x (tanh ¢ — 1)—“/4’7), (190

Dy = (Cgezi()‘2+2 "Q)t(n tanh & 4+ ¢\)(tanh & + 1)_“‘/4

Byy = Cre2 (N +27")lg0ch ¢ (tanh € + 1) "M (tanh € — 1) (191)
+ D1e 2t () tanh € — iA)(tanh & + 1) (tanh & — 1)~V 47,

Byy = Che2 (¥ +2 "2)tsech£ (tanh € + 1)~ % (tanh & — 1)V (192)
4 Dye 2Nt ( tanh & — iX)(tanh € + 1) (tanh & — 1)7/47,

Here the determinant of the solution of the Lax equation ® is constant
and it has the following form

(772 + )\2) (C]_D2 — Cng)
Ui

det(®) = £0. (193)
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Position Vector of NLS Surfaces

We use the following equation
F,=® 'A%, F, = o 'B®.

in order to find the immersion function £'. We obtain F' as
F =ey1 +e2y2 +e3ys

where 31, y2, and y3 are given as

1
___ QX +1)—2
" n(e2§+1)Wg< (X 1) 2),
Yo = —Wg sech(f) SiIl(Q5),

y3 = Wy sech(§) cos(€25),

where

Hn

Wy = 1
M ENIPEY

Qq = (ANt — 2) (0% + \?),

1
Qs = " (477(172 + At — \(2nx — m)), & =2nx — k.
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Example: If we take A =2, u = 3, k = 10 and changing 7 as
a)n=0.5, b)n =0.75,andc)n = 1, in Eqgs.(196) - (198), we get the
surface given in (Figure 8)
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Soliton Surf: 5 1 3 Position Vector of NLS Surfaces

Example: If we take A =0, p = 0.2, = 0.3 and x = 4 in Eqgs.(196) -
(198), we get the surface given in (Figure 9)
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Soliton Surfaces

Example: If we take A = 0.5, p =1, 7 =2 and x = 2 in Eqs.(196) -
(198), we get the surface given in (Figure 10)
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Soliton Surfaces

Example: If we take A = 0.5, p =1, 7 =2 and x = 0 in Eqgs.(196) -
(198), we get the surface given in (Figure 11)
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Soliton Surfaces in Mg

In this section, we develop surfaces in three dimensional Minkowski
space using the similar techniques that we used in previous sections.

Consider the isometric immersion F' : U — Mj.

Here U € M, is the domain of the immersion, My and M3 are two and
three dimensional Minkowski spaces.

To investigate the surfaces in M3, the Lie group G that we use is
SL(2,R), the corresponding Lie algebra g is s((2,R).

The base 2 x 2 matrices of sl(2,R) are
1 0 01 0 1
e1—<0_1>,eg—(10>,63—(_10). (201)
The inner product defined on sl(2,R) is given as
1
(X,)Y) = 3 trace(XY), (202)

for X,Yesl(2,R).
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Soliton Surfaces in Mg KdV Surfaces from Spectral Parameter Deformations

In this section, we obtain surfaces corresponding KdV equation using
spectral parameter deformation [Giirses and Tek, 2014].

Let u(z,t) satisfy the KAV equation

1 3
ut = 7 Usza + o Ula- (203)

The Lax pairs U and V of the KdV equation in Eq. (203) are given as

U_<)\8u (1)) (204)

1 1
——Uyg Su+ A
—qler 5 2A+u) (A —u) 1l

where A is the spectral parameter.
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Soliton Surfaces in Mg KdV Surfaces from Spectral Parameter Deformations

In the following proposition, we obtain KdV surfaces using spectral
parameter deformation of U and V.

Proposition

Let u satisfy the KdV equation given in Eq. (203) and sl(2,R) valued
Laz pairs U and V are defined by Eqs. (204) and (205), respectively.
The matrices A and B defined as spectral parameter deformations of
the Lax pairs U and V', respectively

oU 0 0
A—“a—@ 0>’ (206)
A% 0 j7

where \ is spectral parameter, and p is a constant.

Metin Giirses (Bilkent Univ.) Integrable Curves and Surfaces June 5-10, 2015 110 / 151



Soliton Surfaces in Mg KdV Surfaces from Spectral Parameter Deformations

Proposition

Then the first and second fundamental forms of the surface S are given
as
(dsy)? = gijdr' da? = pPdw dt + & (4A - u)dt?, (208)
(ds1)? = hyjdatda? = —pda® — p(2 X + u)dz dt (209)
_ %(um +(u+2 )\)Z)dtZ,
and the Gaussian and mean curvatures are given as
LT 2 -
K=t g=2A-w (210)
1t 1
where ' =z, 2 =1t.
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Soliton Surfaces in Mg KdV Surfaces from Spectral Parameter Deformations

When we use traveling wave ansatz us + u;/c = 0 in KdV equation, we
obtain the following form of the KdV equation

4
Upy = —3u% — —ut 48, (211)

where ¢ and S are constants.

In the following proposition, we give quadratic Weingarten surfaces.

Proposition

Let u be a traveling wave solution of the KdV equation given in Eq.
(211) and S be the surface obtained using spectral parameter
deformation in Proposition 10.1. Then the surface S is a Weingarten
surface that has the following algebraic relation between K and H

de 2 K443 (243cAN)H-3cp?H>—4(3c 2 +4)X—48¢) =0, (212)

where ¢ and B are constants; u # 0 and ¢ # 0 .
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ectral Parameter Deformat

When we multiply the KdV equation in Eq. (211) by u, and integrate
the resultant equation, we obtain the following form of the KdV
equation

u? = —2u3 + dau® + 8Bu + 27, (213)
where a = —1/¢, ¢ # 0.

The following proposition contains Willmore-like surfaces.
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ces in Mg KdV Surfaces from Spectral Parameter Deformati

Proposition

Let u satisfy the KdV equation given in Eq. (213) and S be the surface
S obtained in Proposition 10.1. Then the surface S is called a
Willmore-like surface. This means that the K and H satisfy the
following partial differential equation

|
n

V2H +aH? + bH K = 0, (214)

where a, b, 8, and v have the following form

7
=—-b=1 215
a 47 bl ( )
B = (28)\a —16a” — 21)?), (216)
v = 5(160;’ — 56Aa” 4 T0aA? — 28X%). (217)
Here a« = —1/c¢ (¢ #0), X and ¢ are arbitrary constants.
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Soliton Surfaces in Mg KdV Surfaces from Spectral Parameter Deformations

In the following proposition we give KdV surfaces that solve the
Euler-Lagrange equation given in Eq. (105).

Proposition
Let u satisfy Eq. (213) and S be the surface in Proposition 10.1. Then
there are KdV surfaces satisfying the following generalized shape
equation

o€ = o€
2 2 . _ =S
(V°+4H 2K) +2(V-V+2KH) 4HE +2p =10, (218)

where Lagrange functions are polynomials of Gaussian and mean
curvatures of the surface S.

v

Let us now give some examples of polynomial Lagrange functions of H
and K that solve the Euler-Lagrange equation given in Eq. (105) and
provide the constraints [Giirses and Tek, 2014].
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Soliton Surfaces in M3 = KdV Surfaces from Spectral Parameter Deformati

i) for N=3:&=a1H>+ asH? + a3H + a4 + a5 K + agKH,
1ppt 150
=— =——— 200 —3 A
a =g @ = e Pa (20 -3)),
P
a3 = 1= (3302 — 44X +8a® —205),
=1
aq = SpT“ (4723 =940 X% +4 (100> — 178) A+ 400 8 — 27),
=1
7put
ag =
7 165,
where
1 =122*-32aX34+(2002—36 B)\2+ (40 a —3 ) A+2 ay+16 52,
uw#0,p#0, A\ a, B, v and as are arbitrary constants, but A, «,
and v cannot be zero at the same time.

v
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Soliton Surfaces in Mg KdV Surfaces from Spectral Parameter Deforma

ii) for N =4:
E=aH*+asH3+a3H?>+asH+as+ag K +a7 K H+ag K% 4ag K H?,
ai,as,as, a4, as, a7 can be written in terms of ag, ag, a, B, v, i, p
and A.

iii) for N =5
E=a1H>+asH*+asH>+ a4 H> +as H+ag+ a7 K +as K H+
agKZ+a10KH2+a11K2H+6L12KH3,
a1, as,as, a4, as, dg, ag can be written in terms of ag, a19, a11, a12, «,
B, v, u, p and .

For general N > 3, from the above examples, the polynomial function
£ takes the form

N ey
g = Z Hn Z aanl7
n=0 =0

where |z]| denotes the greatest integer less than or equal to z and a,;
are constants.
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Soliton Surfaces in Mg KdV Surfaces from Spectral Parameter Deformations

In this section, we find the position vector of the KAV surfaces using
the solution of KdV equation and its the Lax pairs. We will consider
two different solutions of the KdV equation.

E

Consider the constant solution
2
u=1up==(ax+/a?+3p) (219)

of the integrated form of the KdV equation given in Eq. (213)], where
a=—1/c, c#0.

Using this solution and corresponding matrix Lax pairs U and V given
by Egs. (204) and (205) of KdV equation, we solve the Lax equations
given in Eq. (51).
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Soliton Surfaces in Mg KdV Surfaces from Spectral Parameter Deformations

The solution of Lax equation is a 2 X 2 matrix ®

D11 Pro >
b = . 220
< Dy Do (220)

We find these components as

= C4 em(nt+:v) + Dy e—m(nt-l—z),
By = Cy™MHH2) | P, o= mlnt+e)
$y = m(C gmntte) _ Dy e_m("t“)),
Doy = m(Co gmntte) _ Dy e*m("t”))

(
(
(
(

where A — ug = m?, (2\ +ug)/2 = n, C1, Co, D1 and Dy are arbitrary
constants.

Here we find that det(®) = 2m(CeDy — C1D3) # 0.
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Soliton Surfaces in Mg KdV Surfaces from Spectral Parameter Deformati

By using A, B, and ®, we solve Eq. (52) and write F' as

_10P
F=9% 15 = y1e1 + y2e2 + yses, (225)

where ey, ez, e3 are basis elements of s[(2,R) and

_ <D102 + 01D2> (4/\ — ’LL())t +x (226)

N="\bic,—-aiby)  2vh —w
D1Cq — DyCy (4)\ — ’LL())t +x

= , 227

- (chg—DQOl) 2VA — 227)
D1C1 + DyCy (4/\ - ’U,())t +x

= _ . 228

& <D102 —D201> 24/ A — g (228)

Hence we find the position vector Y = (y1(z,t), y2(x,t),ys(x,t)) of
KdV surfaces in M3 using the constant solution given in Eq. (219).

The components y1, y2 and ys of the position vector the KdV surfaces
are given by Eqs. (226)-(228), respectively. This surface is plane in Ms.
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Soliton Surfaces in Mg KdV Surfaces from Spectral Parameter Deformations

e

Consider the one soliton solution

u = 2k? ?sech?k(t — cx) (229)

of the KAV equation, where k? = —1/¢3.

We solve the Lax equations given in Eq. (51) using one soliton solution
and corresponding matrix Lax pairs U and V given by Eqgs. (204) and
(205) of KAV equation. Here we denote k(t — cx) = £ and let A = k2c2.

The solution of Lax equation is a 2 X 2 matrix ®

P11 Pyo
o= , 230
( Dy Do > (230)
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Soliton Surfaces in Mg KdV Surfaces from Spectral Parameter Deformations

where @11, @12, Po1, P12 are given as

®11 = By (2ktsech& 4+ sinh & + Esech &) + Cysech &, (231)
®19 = By (2ktsech & 4 sinh & + Esech &) + Casech &, (232)

Py = ke| By <2kt sech  tanh & — cosh & — sech &

+ &sech € tanh §> + C1sech € tanh f} , (233)

Doy = kc| B> <2l<:t sech £ tanh € — cosh & — sech &
+ &sech € tanh f) + Cysech € tanh f} , (234)

where By, By, C7 and Cy are arbitrary constants. The determinant of
the matrix ® is a constant, we find it as

det(q)) =2 kC(CQBl — ClBQ) 7& 0. (235)
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Soliton Surfaces in Mg KdV Surfaces from Spectral Parameter Deformati

We use the following equation
F,=®1'A®, F, = & 'B®. (236)

in order to find the immersion function . When we solve the
consequent equations, we acquire the immersion function F' as

F = y1e1 + yoeo + yses, (237)
where
2Wy
Y1 = o [<Q6C2 + Q7¢ + C3> Wio + QgCeWi1 + W12] (238)
W,
Y2 = C19 [(Qng +Q7¢ + C4) Wiz + <Q10C2 + Q11>W14 + Wi239)

Y3 = Vgg [(99@ + Q71 + C4) Wie + (QloCQ + 911)W17 + W1240)

and eg, ez, e3 are basis elements of s[(2,R).
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Soliton Surfaces in Mg KdV Surfaces from Spectral Parameter Deformati

Here ¢;,1=1,2,3,4, Q;,  =6,7,...,10, and W;, 1 = 9,10, ...,18 are

given as

G=14e* =e%-1(=c(e™ —1-2sinh(2)), (241
C4 — C3 + 2881527 QG = —8<cx + 3t)2, Q7 = 4k63<9t — Cx)v (242
Qg = 8kc3(3t — cx), Qg = —8(c*2? — 6tex — 9t2), (243

)
)
)
Qo = —16kc3(cx + 3t), Q1 = —192kc3t, (244)
Wy = p/32¢% (B1Cy — B201), Wig = By Ba, W11 = C1 By + Ca(B45)
Wia = —16¢3C1Co, W13 = B3 — B}, Wiy = BoCy — B1Cy,  (246)
Wis = 16¢® (Cf — C3) ,Wig = B} + B3, Wiz = B1Cy + BoC2(247)
Wig = —16¢3(C% + C3), (248)

where (;, ¢ =1,2,3,4 and €5, j = 6,7, ...,10 are functions of = and ¢,
and Wy, 1 = 9,10, ...,18 are constants given in terms of arbitrary
constants By, By, C1, and Cs.
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arameter Deforn

Example: Taking u=1,k=1,c=1, By =—-1, By =1, C} =1,
Cy =1 in Egs. (238) - (240), we get the surface given in Figure 12.
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arameter Deforn

Example: Taking u=1,k=1,c=3, Bi=—-1, By =1, Cy =1,
Cy =1 in Eqgs. (238) - (240), we get the surface given in Figure 13.

Figure: (z,t) € [-2,2] x [-2,2]
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Soliton Su ces in Mg KdV Surfaces from the Spectral-Gauge Deformati

In this section, we develop KdV surfaces using spectral-Gauge
deformation.

Proposition

Let u satisfy the KdV equation given in Eq. (203) and sl(2,R) valued
Laz pairs U and V' are defined by Eqs. (204) and (205), respectively.
sl(2,R) valued matrices A and B are defined as

oU
Azulm—i—ug[el,U], (249)
oV
B=u15+uz[61,U] (250)
0 22X +u) +
22 (e — 220 — w)(u+ X)) + 2L (42 - 1) 0

where 1 and Wy are arbitrary constants.
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Soliton Surfaces in Mg KdV Surfaces from the Spectral-Gauge Deformati

Proposition

First and second fundamental forms of the surface S are given as
(dsr)? = gijdx' da? = 2 g <2,u2(u - )+ m)dﬂc? (251)
+ (o2 wze = 20+ 221 = 2082 X = )] + 123 davt
— 5 (22X 1 ) 2zl + 2X]0A — ] = g A = ] — oz ) e,
(dsr1)? = hyjda' da? = (4,u2()\ —u) — ,ul)de (252)
—(,ug Uy + [,ul —4dpug(N— u)] [2)\ + u])dmdt

_i([ul +2M2(2)\+u)]u2x aF [ul _4M2()\—u)] [U+2>\]2)dt2,
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Proposition

and the corresponding Gaussian and mean curvatures are

Uz
K = ) 253
! M%uzz + w1 (4 MQ[)\ - u] - Ml) ( )
2 - fi
Hy = A —w) F o , (254)
P3tzz + p (4 po[A — u] — p1)
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Soliton Surfaces in M3 = HD Surfaces

In this section we obtain surfaces in M3 corresponding Harry Dym
(HD) equation [Tek, 2007], [Tek, 2009].
Let u(x,t) satisfy the HD equation

up = —u Uy (255)

The Lax pairs U and V of the HD equation in Eq. (255) are given as

0 1
U= A2 , (256)
— 0
U
Ug —2u
V =2\ 2\2 : (257)
Ugy — T —Ug

were \ is a spectral parameter.
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Soliton Surfaces in M3 = HD Surfaces

In the following proposition, we develop HD surfaces using spectral
deformation of the Lax pairs U and V.

Proposition

Let u satisfy the HD equation given in Eq. (255) and sl(2,R) valued
Laz pairs U and V' are defined by Eq. (256) and (257), respectively.
The matrices A and B are defined as

U 0 O
A: —_—
Aoy 2#/\<i2 0>, (258)
u
1% Uy —2u
Hax A um—ﬂ —Ug (259)
u

where p is a constant and X\ is a spectral parameter.
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Soliton Surfaces in Mg HD Surfaces

Proposition

The first and second fundamental forms of the surface S are given as

(dsr)? = gjx do? da®

1
— 1642 /\Q(de dt + [u2 — 2w ugg + 8)\2]dt2>,

. 210\
(ds11)? = hjp do? da* = —=L2 (da? — 8 \2udadt

+2u? [2 u? Uy Uggr + u? Ugy + 8 )\4] dt2>.

Gaussian and mean curvatures of the surface S are given as

u?

1
= 1 (10— 2wt +4%),
where ' = x, 2% =t.

(260)

(261)

(262)

(263)
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Soliton Surfaces in M3 = HD Surfaces

When we use traveling wave ansatz u; — auy = 0 in HD equation given
by Eq. (255), we get

Upy = — — — Cf. (264)
where o and C are arbitrary constants.

When we multiply the HD equation in Eq. (264) by u, and integrate
the resultant equation, we obtain the following form of the HD equation

> = —

1
u? a——2C1u+2C,. (265)
u
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Soliton Surfaces in M3 = HD Surfaces

In the following proposition we give HD surfaces belong to
Willmore-like surfaces.

Proposition

Let u satisfy the equation given in Eq. (265) and S be the surface
obtained in Proposition 10.9. Then the surface S is called a

Willmore-like surface. This means that K and H satisfy the following

partial differential equation
V2H +aH? +bHK =0,
where a, b, C1, and Co have the following form

16 \*

a=-2, b=6, C,= , Cy=—6\2

and X\ is an arbitrary constant.

(266)

(267)
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Soliton Surfaces in M3 = HD Surfaces

The following proposition gives HD surfaces belongs to Weingarten
surfaces.

Proposition

Let u be a travelling wave solution of the HD equation given in Eq.
(265) and S be the surface obtained using spectral parameter
deformation in Proposition 10.9. Then the surface S is a Weingarten
surface that has the following algebraic relation between Gaussian and
mean curvatures of the surface

AP N2 (AK — 3H?) + (24p)3 + 4pXCo)H + C3 = 0, (268)

where C3 = —4X2(3)\2 — C3) — 2aCy + C3.
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Soliton Surfaces in M3 = HD Surfaces

In the following proposition we obtain HD surfaces arise from a
variational principle in another words solve the Euler-Lagrange
equation [Eq. (105)].

Proposition
Let u satisfy the equation given in Eq. (265) and S be the surface in

Proposition 10.9. Then there are HD surfaces satisfying the following
generalized shape equation

oE _ oE
2 2 ) . o _
(V2 +4H? —2K) 7 +2(V -V + 2K H) 7 — 4HE +2p =10, (269)

where the Lagrange function £ is a polynomial of K and H.

We now give some examples of £ for the HD surfaces that solve the
Euler-Lagrange equation given in Eq. (105) and provide the
constraints [Tek, 2009].
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Soliton Surfaces in M3 = HD Surfaces

i) for N =3:
5:a1H3+a2H2+a3H+a4+a5K+a6KH,

11;10,2 4)\(12 14,ua2
——ny @3 = — y 06 = — )
30\ 15 i 15\
@ a4 ZO,Cl :pzo,CQ :2)\,
where A # 0, u, and a5 are arbitrary constants.

Q@ a1 =
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Example

ii)

for N =4:

E=

a1 H*4+ao H3+a3 H> + a4 H+as+a¢ K +a7 K H+ag K?+a9 K H?,

ayp =

ag =

a4 =

ay —

a7 =

C1 =

1
_674 (15 ag + 34 (Ig),

1
480 A
4\

15 3 ()\2 [13as + 8ag] — ;z2 a3),
3

4 ut

1
120 o\
p:O,CQ = 2)\,

(A\? [358ag — Tas] — 176 4u* as),

(3 asg + 2&9),

(A\? [359 ag + 154 ag) + 112 pi* a3),

where X\ # 0, u # 0, and ag are arbitrary constants.
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Soliton Surfaces in Mg HD Surfaces

iii) for N =5
E=a1H’+ayH* +asH3+asH> +as H+ag +ar K +ag K H +
a9K2+a10KH2+a11K2H+a12KH3,

iv) for N =6:

E=a1H +as H + a3 H* +ay H® + as H> + ag H + a7 + ag K +
agKH+a10K2—|—a11KH2+a12K2H+a13KH3+a14K3+
a15K2H2+a16KH4,

For general N > 3, from the above examples, the polynomial function
£ takes the form

N | &) |
£ = ZH" Z am K,
n=0 =0

where |z] denotes the greatest integer less than or equal to z and a,;
are constants.
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Soliton Surfaces in M3 = HD Surfaces

In this section, we find the position vector of the HD surfaces that we
obtained using spectral parameter deformation in Proposition 10.9.

Consider a solution
u=—(a/2) 183 /3, (270)

of the HD equation, where { = ¢ + /o and « # 0 is a constant.

In order to find the position vector first we solve the Lax equation
given in Eq. (51) and the solution of Lax equation 2 x 2 matrix @

D1 Do >
o= : 271
< Dy Do (271)
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Soliton Surfaces in M3 = HD Surfaces

where ®11, ®19, Po1, P19 are given as

®u =35 (Al (1812 — 6 A& /% ] exp {4 X%t + X187/ ¢1/%/3}
+ By [18Y3 £ 603 exp { — 423t — A 182/351/3/3}()272)
2/ 18%/3 3 2/3 ¢1/3
By :_W(Al exp {4 X3¢+ \18%/3 ¢1/3 3}
+ By exp{ 42 t = A1873 /7 /3}) (273)
1
P12 = 137 (A2 [18Y/3 — 6 X3 exp {4 X3t + A18%/3¢1/3/3)
+ By [183 + 63 exp { — 43t — A18%/3 51/3/3}()274)
2v/A18%/3 3 2/3 +1/3
Doy = _W<A2 exp{4)\ t+ 118 £ / /3}
+ By exp{ — 4X 1 - A1849 /7 /31 ), (275)
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Soliton Surfaces in M3 = HD Surfaces

where £ =t + x/a, and A;, Ay, Bi, By, and a # 0 are constants. Here
the determinant of the solution of the Lax equation ® is constant and

it has the following form

8- 18%/3
det(CIJ) = T (AlBQ - AgBl) #0.

We use the following equation

L 00

F=pd~
H N’

in order to find the immersion function F.
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Soliton Surfaces in M3 = HD Surfaces

We obtain F' as

F =eyy1 + eay2 + e3ys (278)

where 31, y2, and y3 are given as

= O <Q13 Wig + Q14 Woo + Q15 W21>7 (279)
0

Y2 = L <Q13 Waa + Q14 Woz + Q5 W24) (280)
Q

Yy = —2 <913 Was + Q14 Wae + Q15 W27> (281)
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Soliton Surfaces in M3 = HD Surfaces

the = 5573 (A1 B, —NA2 By) (at+z)/3 (282)
Q3 = %<3Aa2/3(at + )3 + o 181/3) exp{—2 )\(12 A2 o3¢
+18%/3 (at +x)1/3>/(3 al/3)} (283)
Qg = %( —3xa?/3(at +2)'/3 + oz181/3> exp{2 )\(12)\2 ol /3t
+18%/3 (at +$)1/3>/(3 al/3)} (284)
Q5 =22218¥3 a3 (at + 2)¥3 + 1204 0?3t (at + 2)1/2 + 1813 q,
Wig = B1 Ba, Wao = Ay Ag, Way = % (A1 By + A3 By), (285)
Way = B3 — B?, Woz = A2 — A2 Wy = Ay By — A; By, (286)
Was = B3 + B?, Wog = A3 + A2 Wy = Ay By + A By. (287)
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Soliton Surfaces in M3 = HD Surfaces

Example: Taking u=1,a=1, A =1, Ay =1, A, =—1, By = —1,
By = —1, in Egs. (279) - (281), we get the surface given in Figure 14.
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Soliton Surfaces in M3 = HD Surfaces

Example: Taking p =1, a =02, A=0.7, Ay, =1, Ay = -1, By = —1,
By = —1, in Egs. (279) - (281), we get the surface given in Figure 15.
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