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• Minimum Error: p minimizes
maxt∈[0,1] |e(t)|
• e(t) equioscillates 9 times

• p approximates c with order 8
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• The Error

• Conclusions

• Open Problems



The Problem



The Problem

Given: circular arc c : t 7→ (cos(t), sin(t)) , −θ ≤ t ≤ θ, θ ∈ [−π, π].

Find: polynomial curve p : t 7→ (x(t), y(t)) , 0 ≤ t ≤ 1,

x(t), y(t): polynomials of degree 4,

that approximates c with “minimum” error.

Error: The error between p and c is the Euclidean error function:

E(t) :=
√
x2(t) + y2(t)− 1.

The square root limits the possibility of further progress. Thus, to

avoid radicals, the squares of the components of the parametrization

to the circle are used.
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Bézier Curve



Bézier Curve

BÉZIER FORM: p(t) of degree 4 is given in Bézier form:

p(t) =
4∑
i=0

piB
4
i (t) =:

(
x(t)
y(t)

)
, 0 ≤ t ≤ 1,

p0, p1, p2, p3 and p4: Bézier points,

B4
0(t) = (1− t)4, B4

1(t) = 4t(1− t)3, B4
2(t) = 6t2(1− t)2, B4

3(t) =

4t3(1− t) and B4
4(t) = t4: Bernstein polynomial basis of degree 4.
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Bézier points of circular arc
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(
γ
−ζ

)
, p2 =

(
ξ
0

)
,

p3 =

(
γ
ζ

)
, p4 =

(
−α
β

)
.

The Bézier curve:

p(t) =

(
x(t)
y(t)

)
=

 −α (B4
0(t) +B4

4(t)
)

+ γ(B4
1(t) +B4

3(t)) + ξB4
2(t)

β
(
B4

4(t)−B4
0(t)

)
+ ζ

(
B4

3(t)−B4
1(t)

)  , 0 ≤ t ≤ 1.
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Free Parameters

There are 5 free parameters

α, β, γ, ζ, ξ

used to: have the polynomial curve p comply with the conditions of

the approximation problem by substituting x(t) and y(t) into e(t) and

solving the resulting equation using a computer algebra system.

Thereafter, it is shown that these values satisfy the approximation

conditions.



Theorem 1:

The Bézier curve with the Bézier points, wherein

α = α∗ := 0.9165842681395256, β = β∗ := 0.4094945413544973,

γ = γ∗ := 0.0038986502630632704, ζ = ζ∗ := 2.164585487675063,

ξ = ξ∗ := 2.9773929563972596

fulfils the following three conditions:

• p minimizes the infinity norm of the error function maxt∈[0,1] |e(t)|

• p approximates c with order 8,

• the error function e(t) equioscillates 9 times in [0,1].



The error functions satisfy:

−
1

27
≤ e(t) ≤

1

27
,

−
1

27(2− ε)
≤ E(t) ≤

1

27(2 + ε)
,

where

ε = max
0≤t≤1

|E(t)| ≈ 2−8, ∀t ∈ [0,1].
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The Error
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PROPERTIES of the quartic Bézier curve:

Proposition I: The zeros of e(t) and E(t):

t1 =
1

2
(1 + cos(

π

16
)) = 0.990393, t2 =

1

2
(1 + cos(

3π

16
)) = 0.915735

t3 =
1

2
(1 + sin(

3π

16
)) = 0.777785, t4 =

1

2
(1 + sin(

π

16
)) = 0.597545,

t5 =
1

2
(1− sin(

π

16
)) = 0.402455, t6 =

1

2
(1− sin(

3π

16
)) = 0.222215,

t7 =
1

2
(1−cos(

3π

16
)) = 0.0842652, t8 =

1

2
(1−cos(

π

16
)) = 0.00960736.

These roots also satisfy

ti + tj = 1, for i+ j = 9.



Proposition II: The extreme values of e(t) and E(t) occur at

t̃0 = 1, t̃1 =
1

2
(1 + cos(

π

8
)) = 0.96194, t̃2 =

1

2
(1 +

1√
2

) = 0.853553,

t̃3 =
1

2
(1+sin(

π

8
)) = 0.691342, t̃4 =

1

2
, , t̃5 =

1

2
(1−sin(

π

8
)) = 0.308658.

t̃6 =
1

2
(1−

1√
2

) = 0.146447, t̃7 =
1

2
(1−cos(

π

8
)) = 0.0380602, t̃8 = 0.

These parameters satisfy the equality:

t̃i + t̃j = 1, for i+ j = 8.



Proposition III: the values of e(t) and E(t) at t̃i’s are given by:

e(t̃2i) =
1

128
, i = 0, . . . ,4,

e(t̃2i+1) =
−1

128
, i = 0, . . . ,3.

E(t̃2i) = 3.9× 10−3, i = 0, . . . ,4,

E(t̃2i+1) = −3.9× 10−3, i = 0, . . . ,3.

Therefore,

−1

128
≤ e(t) ≤

1

128
,

−3.9× 10−3 ≤ E(t) ≤ 3.9× 10−3, t ∈ [0,1].



Proposition IV: For every t ∈ [0,1], the errors of approximating the

circular arc using the quartic Bézier curves in Theorem 1 are given by:

e(t) = 256t8−1024t7 +1664t6−1408t5 +660t4−168t3 +21t2− t+
1

128
.



Examples and Comparisons

Most of existing schemes are for cubic Bézier curves.

Bézier (1986): interpolate end points, point in middle, 3× 10−4.

Blinn (1987): used values and tangents at end points, 4× 10−4.

De Boor, Höllig, and Sabin (1988): values of positions, tangents, and

curvatures at endpoints and got approximation order 6.

Rababah (1992): get the high order approximation of 2n, for a

polynomial of degree n. Therein, a circular arc is represented as an

example using data at one or 2 points, 2× 10−3.



Dokken, Dæhlen, Lyche, and Mørken (1990): a scheme using
geometric properties of circle, 1× 10−4.

Goldapp (1991): presented different types of cubic approximations of
circular arcs of order 6, 2× 10−4.

However, some schemes use quartic Bézier curves.

Ahn and Kim (1997) described quartic scheme that has the
parameters 0 and 1 of multiplicity 4 as roots of the error function with
error 4× 10−5.

Ahn, Kim, and Shin (2004) described other scheme has the
parameters 0,0.5,1 with multiplicities 3,2,3, respectively as roots of
the error function with error 4× 10−6.



Kim and Ahn (2007, 2013) presented a scheme that is

curvature-continuous with error 7.6× 10−6, 2× 10−6.

The last approximation is the best result so far.

In our scheme, The error function has 8 distinct roots that have

Chebyshev distribution in the interval [0,1].

The quartic Bézier curve has the least uniform deviation from the

x-axis with maximum error of 2× 10−7.
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The Error
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Conclusions

The best uniform approximation of a circular arc with parametrically
defined polynomial curves of degree 4 is explicitly given.

The error function equioscillates 9 times;

the approximation order is 8.

The approximation intersects the circular arc 8 times with maximum
error 2× 10−7 and thus outperforming the approximations given so far
in the literature.

Numerical examples are given to demonstrate the efficiency and
simplicity of the approximation method. The method in this paper is
C0−continuous by construction. There are methods in the literature
that are G1− and G2−continuous.
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Open Problems

1. study quartic approximation with Gk−continuity, k = 1,2, using
equioscillating error functions and constrained Chebyshev
polynomials.

2. find a way to write the Bézier points in terms of the angle θ. It
would be very important to have the best approximation available
for all θ perhaps by employing a semi-numerical method.

3. Apply these results in this paper to perform degree reduction of
Bézier curves to get the best approximation with the minimum
uniform error.

4. (Suggested by Paul Sablonniére) It would be interesting to
compare our curve with the quartic exponential Euler spline
defined by Schoenberg and studied by de Boor.



Thank you!

Questions?
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