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Summary. Two Sinorhizobium meliloti strains (1021 and NitR)
were used for inoculation of alfalfa plants to study nitrogen 
assimilation under nutrient deficiency conditions in hydroponics 
experiments. The wild type Sinorhizobium meliloti 1021 was 
compared with a mutant strain – S. meliloti NitR. NitR protein 
was found to be a regulator of S. meliloti hmgA expression under 
nitrogen deprivation conditions, suggesting the presence of a 
ntr-independent nitrogen deprivation regulatory system. nitR 
insertion mutations were shown not to affect bacterial growth, 
nodulation of Medicago sativa plants, or symbiotic nitrogen 
fixation under the physiological conditions examined. The 
relationship between free living and symbiotic bacterial forms 
was revealed indirectly by the changes of nitrogen fixation 
and assimilation under conditions of nutrient deficiencies. 
Before seeds inoculation, bacteria were cultivated in Vincent 
minimal media with limited nitrogen source. The alfalfa plants 
were grown on a nutrient solution in the presence or absence 
of molybdenum. The differences between the two symbiotic 
systems were established by the variations of nodule formation 
and enzyme activities participated in nitrogen fixation and 
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INTRODUCTION

 The role of biological nitrogen fixation is well-known for a long time as 
a nonpolluting and cost-effective way to improve soil fertility. Rhizobia, 
such as S. meliloti, must be able to persist and compete for scarce nutrients 
in the bulk soil, compete for colonization of the rhizosphere and plant 
infection, and adapt their metabolism to the nutritionally more favorable, 
distinct conditions within the plant cells in the nodule. These three different 
modes of existence exemplify the need for a high degree of physiological 
adaptability, specific genetic mechanisms to sense changes in environmental 
conditions, and the ability to respond rapidly. These characteristics led to a 
search for S. meliloti genes specifically expressed under nutrient limitation 
conditions (Milcamps et al., 2001). Recently, a gene, named nitR, involved in 
direct or indirect regulation of hmgA gene expression in response to various 
stresses, including starvation, have been identified in S. meliloti (Davey and 
de Bruijn, 2000; Milcamps et al., 2001). hmgA gene expression, is involved 
in the degradation of tyrosine as an alternative nitrogen source (Milcamps, 
A., and F. de Bruijn. 1999). The mutant strain referred to as NitR is with 
reduced expression of hmgA under nitrogen deprivation conditions. 
 It is well known that legumes possess a systemic regulatory control 
able to detect the presence of combined nitrogen in the rhizosphere and 

assimilation (nitrogenase – NG: EC 1.7.99.2; glutamine synthetase – 
GS: EC 6.3.1.2; glutamate synthase – NADH-GOGAT: EC 1.4.1.14 
and nitrate reductase – NR-NADH: EC 1.6.6.1). Negative effects of 
Mo shortage on the rate of nitrogen fixation and nitrate reduction in 
both symbiotic systems were found. When plants were inoculated 
with strain S. meliloti NitR and grown under nitrogen limiting 
conditions, the highest stability of nitrogen fixation and nitrogen 
reduction was determined in conformity with characterization of 
this mutant strain.

Key words: alfalfa; strain effect; nitrogen assimilation, mineral 
elements shortage. VA multifactor analysis.
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block nodulation in response (Salminen and Streeter, 1990). The results 
presented by López-Garciá et al., (2001), Dusha et al. (1999), Parniske et 
al. (1993), indicated that rhizobial N starvation has a positive influence on 
the symbiosis, through parallel effects on the EPS and CPS structure, nod 
gene induction (Mylona et al., 1995), all of which resulted in increased 
nodulation efficiency and competitiveness.
 Insufficient molybdenum supply leads to significant reduction of nitrogen-
fixing activity. The negative effect of Mo exclusion from the nutrient media 
on activity of the enzymes is related to the primary nitrogen assimilation 
(NR, GS, GOGAT) and biomass accumulation. It was found that alfalfa is 
more sensitive to Mo starvation than the pea plants (Hristozkova, 2008). The 
role of Mo as a plant nutrient is related to its function as a metal component 
of some enzymes that catalyze nitrogen fixation, nitrate assimilation and 
reduction (Campbell, 2001).
 A significant variation of plant growth, rates of dry matter and N 
accumulation as well as the total N content of mature plants in response to 
inoculation with Rhizobium strains as a result of differences in N2 fixation 
rates was observed by Rodríguez-Navarro et al. (1999) and Neves et al. 
(1982). Lawn and Bushby (1982) shown that effects of Rhizobium strains 
were associated primarily with specific nodule activity in four Asiatic Vigna 
species. Careful selection of inoculant strain is essential for any legume 
grown under stress (Graham, 1992). 
 The present study was designed to investigate the differences between 
two symbiotic systems (Medicago sativa/ Sinorhizobium meliloti 1021 and 
Medicago sativa/ Sinorhizobium meliloti NitR) in response to Mo deficiency 
(for alfalfa plants) and N limitation (for S. meliloti).The differences were 
established by the variations of nodule formation and enzyme activities 
participated in nitrogen fixation and assimilation: nitrogenase, glutamine 
synthetase, glutamate synthase and nitrate reductase.

MATERIAL AND METHODS

 Seeds of alfalfa (Medicago sativa L. var. Prista 4) were germinated on 
Fahräeus agar at 25 oC according to Journet et al. (2001). Three days old 
seedlings were inoculated with a bacterial suspension of Sinorhizobium 
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meliloti strains 1021 TLS and NitR (the strains is provided by prof. F. de 
Brjiun, LIPM, Toulouse). On the 5th day, seedlings were transferred to 2 
L pots (25 plants per pot) containing liquid nutrient solutions of Helriegel 
and were grown in phytotron chamber at 12 h photoperiod, day/night 
temperature 25/18 oC and photon flux density of 95 µmol m-1s-1 until the 
38th day. The solution was aerated continuously and replaced twice a week. 
Helriegel nutrient solution supplied to plants contained 0,5 mM NO3

-. 
Complementation of the solution with micronutrients was done according 
to Hoagland and Arnon (1950). The following variants were tested: control 
plants; plants inoculated with S. meliloti (1021 and NitR), grown in limited 
nitrogen source conditions; Mo deficient plants; Mo deficient plants 
inoculated with S. meliloti, grown in limited nitrogen source conditions. In 
order to prepare crude extracts for determination of nitrate reductase (NR-
NADH: EC 1.6.6.2), glutamine synthetase (GS: EC 6.3.1.2) and glutamate 
synthase (NADH-GOGAT: EC1.4.1.14), the extraction medium containing 
50 mM Tris-HCl (pH 8.0), 1 µM Na2MoO4, 10 mM MgSO4.7H2O, 1 mM 
EDTA, 10 mM L-cysteine, 1 % PVP-40, 1g Dowex (Frechilla, 2002). The 
extract was filtered through one layer of cheesecloth, centrifuged at 10 000 x 
g for 20 min (4 oC), and the supernatant was used for the following assays: NR 
activity was measured according to Hageman and Reed (1980), GS activity 
was determined by a biosynthetic assay based on γ-glutamil hydroxamate 
synthesis (O’Neal and Joy, 1973), GOGAT activity was assayed according 
to Chen and Cullimore (1988). Protein content was determined according 
to Bradford (1976) with BSA as a standard. Nitrogenase activity (NG: EC 
1.7.99.2) of root nodules was assayed by the acetylene (C2H2) reduction 
technique immediately after harvest according to Hardy et al. (1973). The 
acetylene (C2H2) reduction assay (ARA) was expressed as µmol C2H4 g

-1 
FW nodules h-1. The results are expressed as means ± standard error where 
n=4 (four replications of analyses run with a single sample, derived from 
10 plants). Comparison of means regarding enzyme activity was performed 
by the Fisher LSD test (P≤0.05) after multifactor ANOVA analysis. 

RESULTS AND DISCUSSION

 Our study is based on the special features of stress responses in the 
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Fig. 1. Nitrogenase activity and nodule number in alfalfa plants inoculated with 
S. meliloti (strains 1021 and NitR) grown under various conditions. Different 
letters indicate significant differences assessed by Fisher LSD test (P≤0.05) after 
performing ANOVA multifactor analysis.

studied S. meliloti strains (1021 and NitR) and consequence differences 
in nodule formation and nitrogen fixation rates. The genotype of the 
strain had an important effect on the effectiveness of symbiotic system, 
affecting variables like the number and nitrogenase activity of nodules. The 
behavior of both N2-fixing systems under Mo and N deficiency conditions 
is considered.
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 The nitrogen fixation capacity of the mutant strain NitR is higher than 
1021 in normal conditions and insufficient N in the media. In case of Mo 
deficiency, nitrogenase activity is lower and number of nodules declined in 
comparison to variants with N limitation and control plants in both symbiotic 
systems. The symbiotic bacterial enzyme nitrogenase is comprised of two 
subunits one of which is the MoFe protein directly involved in the reduction 
of N2 to NH3. Supply of molybdenum and Fe to bacteroids is therefore 
an important process and most likely a key regulatory component in the 
maintenance of nitrogen fixation in legumes (Kaiser et al., 2005).
 The lack of correspondence between the nodule number and nitrogen 
fixing activity was observed in the symbiotic systems (Fig. 1). According 
to Skot et al. (1983) and Puppo et al. (2005), different combination between 
bacteria strains and host plant enable plasticity in nodule formation, for 
example decreasing of nodule number lead to bigger nodules with higher 
nitrogen fixation activity.
 Lower nitrate reductase activity in the roots of NitR plants compared to 
1021 plants, both in conditions of Mo deficiency in plants and lack of N for 
bacteria could due to the suppression of high GS/GOGAT activity in the 
roots of these treatments as a consequence of increased NG activity. The 
products of NO3

- assimilation including NH4
+ and amino acids, especially 

glutamine and glutamate, repressed the transcription of nia genes and by 
this way regulate NR activity in the pathway (Hoff et al., 1994; Dzuibany 
et al., 1998). The highest activity of NR was found in the shoots of NitR 
plants in normal conditions (Fig. 2). Pate (1973) pointed out that at low 
levels of nitrate supplied NR is found to be located in the nodulated roots, 
but at higher levels of nitrates more nitrate becomes reduced in the shoots. 
Comparatively higher levels in conditions of Mo deficiency in roots could 
be explained with lower nitrogen fixation.
 GS/GOGAT enzyme activity in plants increased in the progress of 
nodule development and its ability for atmospheric N2 fixation, that is, they 
increased in parallel with the capacity of nodules to convert N2 to glutamine 
and asparagines (Oaks, 1994; Parsons and Sunley, 2001). Reduced nitrogen 
fixing activity under conditions of Mo shortage resulted in decline of root GS/
GOGAT enzyme activities in both symbiotic systems. The highest value of 
shoot GS/GOGAT activity was found under combination of Mo deficiency 
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Fig. 2. NR, GS and GOGAT activities in alfalfa plants inoculated with S. meliloti 
(strains 1021 and NitR) grown under various conditions. Different letters indicate 
significant differences assessed by Fisher LSD test (P≤0.05) after performing 
ANOVA multifactor analysis.
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