Sixteenth International Conference on Geometry, Integrability and Quantization June 6–11, 2014, Varna, Bulgaria Ivaïlo M. Mladenov, Andrei Ludu and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2015, pp 110–138 doi:10.7546/giq-16-2015-110-138

BERTRAND SYSTEMS ON SPACES OF CONSTANT SECTIONAL CURVATURE. THE ACTION-ANGLE ANALYSIS. CLASSICAL, QUASI-CLASSICAL AND QUANTUM PROBLEMS

JAN JERZY SŁAWIANOWSKI and BARBARA GOŁUBOWSKA

Institute of Fundamental Technological Research, Polish Academy of Sciences 5^B Pawińskiego Str., 02-106 Warsaw, Poland

Abstract. Studied is the problem of degeneracy of mechanical systems the configuration space of which is the three-dimensional sphere, the elliptic space, i.e., the quotient of that sphere modulo the antipodal identification, and finally, the three-dimensional pseudo-sphere, namely, the Lobatchevski space. In other words, discussed are systems on groups $SU(2),SO(3,\mathbb{R}),$ and $SL(2,\mathbb{R})$ or its quotient SO(1,2). The main subject are completely degenerate Bertrand-like systems. We present the action-angle classical description, the corresponding quasi-classical analysis and the rigorous quantum formulas. It is interesting that both the classical action-angle formulas and the rigorous quantum mechanical energy levels are superpositions of the flat-space expression, with those describing free geodetic motion on groups.

MSC: 51P05, 53A35, 37N05

Keywords: action-angle description, Bertrand systems, completely degenerate problems, elliptic space, Lobatchevski space, quasi-classical analysis, sphere

CONTENTS

1.	Introduction	111
2.	Constant-Curvature Hypersurfaces in \mathbb{R}^4 and Their Bertrand Potentials	112
3.	Some General Features of Motion	122
4.	Hamilton-Jacobi Equations, Action-Angle Variables and the Bohr-Sommerfeld Quantization Rule	
5.	Rigorous Quantization in the Schrödinger Language	133
Acl	knowledgements	. 136
Ref	Ferences	136