QUASI-CLASSICAL CALCULATION OF EIGENVALUES BY MASLOV QUANTIZATION CONDITION

TOMOYO KANAZAWA and AKIRA YOSHIOKA

Department of Mathematics, Tokyo University of Science, Kagurazaka 1-3 Shinjuku-ku, Tokyo 162-8601, Japan

Abstract. The Maslov quantization condition is a condition for Lagrangian submanifolds which is regarded as a mathematical extension of the Bohr-Sommerfeld quantization condition. In this survey note, we apply the Maslov quantization condition to several concrete Schrödinger operators and quantize invariant Lagrangian submanifolds of their classical systems. We see the quasi-classical energy levels are equal to the quantum ones for these operators and also the number of Lagrangian submanifolds is equal to the multiplicities of eigenvalues for these operators.

MSC: 53D12, 81S10

Keywords: Maslov quantization condition, quasi-classical eigenvalue

CONTENTS

1. Introduction .. 185
2. Maslov Quantization Condition 186
3. Quasi-Classical Calculation of Eigenvalues 186
4. Example 1: The Hydrogen Atom 188
 4.1. Phase Space ... 188
 4.2. Schrödinger Operator .. 188
 4.3. Hamiltonian Functions 189
 4.4. A Priori Inequality ... 189
 4.5. Level Sets .. 190
 4.6. Kepler Manifold and Souriau Map 190
 4.7. Parametrization of $T(\alpha) \simeq L(E, T_1, \pi_1)$ 192
 4.8. Recall : Maslov Form 193
 4.9. Integrable Case ... 195
 4.10. Maslov Indices $m_{L(E, T_1, \pi_1)}(c_k)$ 196