RELATIVISTIC-GEOMETRIC ENTANGLEMENT: SYMMETRY GROUPS OF SYSTEMS OF ENTANGLED PARTICLES

ABRAHAM A. UNGAR

Department of Mathematics #2750, North Dakota State University, Fargo, ND 58108-6050, USA

Abstract. It is known that entangled particles involve Lorentz symmetry violation. Hence, we pay attention to Lorentz transformations of signature (m, n) for all positive integers m and n. We show that these form the symmetry groups by which systems of m entangled n-dimensional particles can be understood, just as the common Lorentz group of signature $(1, 3)$ forms the symmetry group by which Einstein’s special theory of relativity is understood. A novel, unified parametric realization of the Lorentz transformations of any signature (m, n) shakes down the underlying matrix algebra into elegant and transparent results.

MSC: 81M05, 81P40, 83A05, 51M10

Keywords: Galilei transformations of signature (m, n), Lorentz transformations of signature (m, n), pseudo-Euclidean spaces, quantum entanglement, relativistic-geometric entanglement, special relativity

CONTENTS

1. Introduction ... 267
2. Pseudo-Euclidean Spaces and Pseudo-Rotations 269
3. Matrix Balls of Radius c ... 271
4. V-Parametric Realization of Lorentz Transformations of Signature (m, n) 273
5. Additive V-Decomposition of the Lorentz Bi-boost 274
6. Application of the Galilei Bi-boost of Signature $(1, 3)$ 276
7. Application of the Galilei Bi-boost of any Signature 277
8. Application of the Lorentz Bi-boost of any Signature 279
9. Geometric Entanglement in Bi-hyperbolic Geometry 281
References .. 283

266