SOLUTIONS TO A VECTOR HEISENBERG FERROMAGNET EQUATION RELATED TO SYMMETRIC SPACES

TIHOMIR VALCHEV and ALEXANDAR YANOVSKI†

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Block 8, 1113 Sofia, Bulgaria
†Department of Mathematics & Applied Mathematics, University of Cape Town
Rondebosch 7700, Cape Town, South Africa

Abstract. In this report we consider a vector generalization of Heisenberg ferromagnet equation. That completely integrable system is related to a spectral problem in pole gauge for the Lie algebra $\mathfrak{sl}(n+1, \mathbb{C})$. We construct special solutions over constant background using dressing technique.

MSC: 35C05, 35C08, 35G50, 37K15, 37K35

Keywords: Dressing method, particular solutions, vector generalized Heisenberg ferromagnet equation

1. Introduction

In [8], the authors of the current text introduced the following matrix system of completely integrable equations

$$i u_t + \left[(uQ_mu^\dagger Q_n)_x - u(Q_mu^\dagger Q_n)u_x \right]_x = 0 \quad (1)$$

and the corresponding auxiliary spectral problem. Above, the subscripts mean partial differentiation, “\dagger” denotes Hermitian conjugation and Q_m, Q_n are diagonal matrices of dimension m and n respectively having ± 1 on their principal diagonals. It is also assumed that the $n \times m$ matrix $u(x,t)$ fulfill certain algebraic condition, see [8] for more details.

System (1) contains as particular cases the classical $1+1$ dimensional Heisenberg ferromagnet equation, known to be integrable through inverse spectral transform [2, 6] and some of its integrable generalizations recently studied [1, 9, 10]. Its Lax